Michael James is remembered.
View Article and Find Full Text PDFRhomboid peptidases (proteases) play key roles in signaling events at the membrane bilayer. Understanding the regulation of rhomboid function is crucial for insight into its mechanism of action. Here we examine the oligomeric state of three different rhomboid proteases.
View Article and Find Full Text PDFMutations in the gene encoding DJ-1 have been identified in patients with familial Parkinson's disease (PD) and are thought to inactivate a neuroprotective function. Oxidation of the sulfhydryl group to a sulfinic acid on cysteine residue C106 of DJ-1 yields the "2O " form, a variant of the protein with enhanced neuroprotective function. We hypothesized that some familial mutations disrupt DJ-1 activity by interfering with conversion of the protein to the 2O form.
View Article and Find Full Text PDFWe have identified a novel mutation in apoA-I (serine 36 to alanine; S36A) in a human subject with severe hypoalphalipoproteinemia. The mutation is located in the N-terminal region of the protein, which has been implicated in several functions, including lipid binding and lecithin:cholesterol acyltransferase (LCAT) activity. In the present study, the S36A protein was produced recombinantly and characterized both structurally and functionally.
View Article and Find Full Text PDFThe release of ligand from the low-density lipoprotein receptor (LDLR) has been postulated to involve a "histidine switch"-induced intramolecular rearrangement that discharges bound ligand. A recombinant soluble low-density lipoprotein receptor (sLDLR) was employed in ligand binding experiments with a fluorescently tagged variant apolipoprotein E N-terminal domain (apoE-NT). Binding was monitored as a function of fluorescence resonance energy transfer (FRET) from excited Trp residues in sLDLR to an extrinsic fluorophore covalently attached to Trp-null apoE3-NT.
View Article and Find Full Text PDFPrevious studies of recombinant full-length human apolipoprotein A-V (apoA-V) provided evidence of the presence of two independently folded structural domains. Computer-assisted sequence analysis and limited proteolysis studies identified an N-terminal fragment as a candidate for one of the domains. C-Terminal truncation variants in this size range, apoA-V(1-146) and apoA-V(1-169), were expressed in Escherichia coli and isolated.
View Article and Find Full Text PDFParkinson's disease (PD) is a neurodegenerative disorder characterized by oxidative stress and protein aggregation. Both toxic phenomena are mitigated by DJ-1, a homodimeric protein with proposed antioxidant and chaperone activities. The neuroprotective function of DJ-1 is modulated by oxidation of cysteine 106, a residue that may act as an oxidative stress sensor.
View Article and Find Full Text PDFThe N-terminal domain of human apolipoprotein E (apoE-NT) harbors residues critical for interaction with members of the low-density lipoprotein receptor (LDLR) family. Whereas lipid free apoE-NT adopts a stable four-helix bundle conformation, a lipid binding induced conformational adaptation is required for manifestation of LDLR binding ability. To investigate the structural basis for this conformational change, the short helix connecting helix 1 and 2 in the four-helix bundle was replaced by the sequence NPNG, introducing a beta-turn.
View Article and Find Full Text PDFA combined N- and C-terminal truncation variant of human apolipoprotein A-I (apoA-I) was designed, expressed in Escherichia coli, isolated, and characterized. Hydrodynamic experiments yielded a weight average molecular weight of 34000, indicating apoA-I-(44-186) exists in solution predominantly as a dimer. An axial ratio of 4.
View Article and Find Full Text PDFThe members of the ezrin-radixin-moesin (ERM) family of proteins function as membrane-cytoskeletal cross-linkers in actin-rich cell surface structures. ERM proteins are thereby thought to be essential for cortical cytoskeleton organization, cell motility, adhesion, and proliferation. These modular polypeptides consist of a central helix-rich region, termed the alpha-domain, that connects an N-terminal FERM domain required for membrane binding and a C-terminal region which contains a major actin-binding motif.
View Article and Find Full Text PDFTo investigate structure and function relations of a new member of the exchangeable apolipoprotein family that modulates plasma lipid levels, recombinant human apolipoprotein (apo) A-V was produced in Escherichia coli and isolated by a combination of nickel chelation affinity chromatography and reversed-phase HPLC. Antibodies directed against apoA-V were generated and employed in immunoblotting experiments. Anti-apoA-V IgG gave a strong response against recombinant apoA-V from E.
View Article and Find Full Text PDFWe characterized the regulatory cytoplasmic tail of the Na(+)/H(+) exchanger using a histidine-tagged protein containing the C-terminal 182 amino acids (His182). Both tescalcin and calmodulin, two Na(+)/H(+) exchanger binding proteins, bound to the His182 protein. Cascade blue was used to label the His182 protein.
View Article and Find Full Text PDFApolipoprotein (apo) E plays a major role in lipid metabolism by mediating cellular uptake of lipoprotein particles through interaction with members of the low density lipoprotein (LDL) receptor family. The primary region of apoE responsible for receptor binding has been limited to a cluster of basic amino acids between residues 134 and 150, located in the fourth helix of the N-terminal domain globular helix bundle structure. To investigate structural and functional requirements of this "receptor binding region" we engineered an apolipoprotein chimera wherein residues 131-151 of human apoE were substituted for residues 146-166 (helix 5) of Manduca sexta apolipophorin III (apoLp-III).
View Article and Find Full Text PDFProtein Expr Purif
March 2003
The ileal lipid binding protein (ILBP), a member of the intracellular lipid binding protein family, is a 14-kDa protein that has bile and fatty acids as possible physiological ligands. The ligand binding specificity of this protein is not well characterized. Therefore, we studied the lipid binding activity of purified recombinant murine ILBP (mILBP) in vitro.
View Article and Find Full Text PDFHuman apolipoprotein (apo) E exists as one of three major isoforms, E2, E3 or E4. Individuals carrying the epsilon 4 allele have an increased risk of heart disease and premature onset of Alzheimer's disease. To investigate the molecular basis for this phenomenon, the N-terminal domain of apoE3, apoE2 and apoE4 were expressed in bacteria, isolated and employed in lipid binding and stability studies.
View Article and Find Full Text PDFTropomyosin is a flexible 410 A coiled-coil protein in which the relative stabilities of specific regions may be important for its proper function in the control of muscle contraction. In addition, tropomyosin can be used as a simple model of natural occurrence to understand the inter- and intramolecular interactions that govern the stability of coiled-coils. We have produced eight recombinant tropomyosin fragments (Tm(143-284(5OHW),) Tm(189-284(5OHW)), Tm(189-284), Tm(220-284(5OHW)), Tm(220-284), Tm(143-235), Tm(167-260), and Tm(143-260)) and one synthetic peptide (Ac-Tm(215-235)) to investigate the relative conformational stability of different regions derived from the C-terminal region of the protein, which is known to interact with the troponin complex.
View Article and Find Full Text PDFApolipophorin III (apoLp-III) is a prototype exchangeable apolipoprotein that is amenable to structure-function studies. The protein folds as a bundle of five amphipathic alpha-helices and undergoes a dramatic conformational change upon lipid binding. Recently, we have shown that a truncation mutant of Galleria mellonella apoLp-III comprising helices 1-3 is stable in solution and able to bind to lipid surfaces [Dettloff, M.
View Article and Find Full Text PDF