Alterations in histone lysine methylation and other epigenetic regulators of gene expression contribute to changes in brain transcriptomes in mood and psychosis spectrum disorders, including depression and schizophrenia. Genetic association studies and animal models implicate multiple lysine methyltransferases and demethylases in the neurobiology of emotion and cognition. Here, we review the role of histone lysine methylation and transcriptional regulation in normal and diseased neurodevelopment and discuss various methyltransferases and demethylases as potential therapeutic targets in the treatment of neuropsychiatric disease.
View Article and Find Full Text PDFSpinal muscular atrophy (SMA), an inherited disease of motor neuron dysfunction, results from insufficient levels of the survival motor neuron (SMN) protein. Movement of the SMN protein as granules within cultured axons suggests that the pathogenesis of SMA may involve defects in neuronal transport, yet the nature of axon transport vesicles remains enigmatic. Here we show that SMN directly binds to the α-subunit of the coat protein I (COPI) vesicle coat protein.
View Article and Find Full Text PDF