Publications by authors named "Cyril Inard"

The association of DNA Ligase IV (Lig4) with XRCC4 is essential for repair of DNA double-strand breaks (DSBs) by Non-homologous end-joining (NHEJ) in humans. DSBs cytotoxicity is largely exploited in anticancer therapy. Thus, NHEJ is an attractive target for strategies aimed at increasing the sensitivity of tumors to clastogenic anticancer treatments.

View Article and Find Full Text PDF

Determining the cellular level of activated form of RhoGTPases is of key importance to understand their regulatory functions in cell physiopathology. We previously reported scFvC1, that selectively bind to the GTP-bound form of RhoA, RhoB and RhoC. In this present study we generate, by molecular evolution, a new phage library to isolate scFvs displaying high affinity and selectivity to RhoA and RhoB.

View Article and Find Full Text PDF

A series of triazoles have been prepared and evaluated as inhibitors of InhA as well as inhibitors of Mycobacterium tuberculosis H(37)R(v). Several of these new compounds possess a good activity against InhA, particularly compounds 17 and 18 for which molecular docking has been performed. Concerning their activities against M.

View Article and Find Full Text PDF

InhA, the enoyl reductase from the mycobacterial type II fatty acid biosynthesis pathway, is a target for the development of novel drugs against tuberculosis. We exploited copper-catalyzed [3+2] cycloaddition between alkynes and different azides to afford 1,4-disubstituted triazole or α-ketotriazole derivatives. Several compounds bearing a lipophilic chain mimicking the substrate were able to inhibit InhA.

View Article and Find Full Text PDF

The exceptionally high affinity of biotin toward avidin and streptavidin is at the basis of (strept)avidin-biotin biotechnology, which has numerous applications in life sciences. Recent biotin developments for in vivo and in vitro acylation of selective targeted protein and intein-mediated site specific protein biotinylation require the free biotin carboxyl function to covalently bind with the targeted protein. However, recently this carboxylic function has been used to substitute biotin with numerous ligands and flags.

View Article and Find Full Text PDF