Publications by authors named "Cyril Hnatovsky"

Material modification is produced inside silica-based optical fibers of different diameters using tightly focused near-infrared (central wavelength at 800 nm) femtosecond laser pulses and the phase mask technique which is often employed for laser inscription of fiber Bragg gratings. 1-, 2-, and 3-order phase masks designed for the operation at 800 nm are used in the experiments. The inscription is performed at different distances from the fiber's front surface by translating the focusing cylindrical lens along the laser beam propagation direction.

View Article and Find Full Text PDF

The performance of a semiconductor quantum-electronic device ultimately depends on the quality of the semiconductor materials it is made of and on how well the device is isolated from electrostatic fluctuations caused by unavoidable surface charges and other sources of electric noise. Current technology to fabricate quantum semiconductor devices relies on surface gates which impose strong limitations on the maximum distance from the surface where the confining electrostatic potentials can be engineered. Surface gates also introduce strain fields which cause imperfections in the semiconductor crystal structure.

View Article and Find Full Text PDF

Fiber Bragg gratings with a very low insertion loss are inscribed using the phase mask technique and a single infrared (800 nm) femtosecond laser pulse. The morphology of the resultant light-induced structural changes in the Ge-doped silica fiber (SMF-28) is analyzed using scanning electron microscopy. The electron microscopy images reveal that each Bragg grating period incorporates an elongated micropore embedded in a region of homogeneous material modification.

View Article and Find Full Text PDF

We propose a quantum memory protocol based on trapping photons in a fiber-integrated cavity, comprised of a birefringent fiber with dichroic reflective end facets. Photons are switched into resonance with the fiber cavity by intracavity Bragg-scattering frequency translation, driven by ancillary control pulses. After the storage delay, photons are switched out of resonance with the cavity, again by intracavity frequency translation.

View Article and Find Full Text PDF

High-temperature-resistant fiber Bragg gratings (FBGs) are the main competitors to thermocouples as sensors in applications for high temperature environments defined as being in the 600-1200 °C temperature range. Due to their small size, capacity to be multiplexed into high density distributed sensor arrays and survivability in extreme ambient temperatures, they could provide the essential sensing support that is needed in high temperature processes. While capable of providing reliable sensing information in the short term, their long-term functionality is affected by the drift of the characteristic Bragg wavelength or resonance that is used to derive the temperature.

View Article and Find Full Text PDF

A review of recent progress in the use of infrared femtosecond lasers to fabricate optical fiber sensors that incorporate fiber Bragg gratings (FBG) and random fiber gratings (RFG) is presented. The important advancements in femtosecond laser writing based on the phase mask technique now allow through-the-coating (TTC) fabrication of Bragg gratings in ultra-thin fiber filaments, tilted fiber Bragg gratings, and 1000 °C-resistant fiber Bragg gratings with very strong cladding modes. As an example, through-the-coating femtosecond laser writing is used to manufacture distributed fiber Bragg grating sensor arrays for oil pipeline leak detection.

View Article and Find Full Text PDF

Tilted fiber Bragg gratings are inscribed in non-photosensitized single mode fibers through the polyimide coating using a femtosecond infrared laser and a phase mask. The inscription technique used is based on simultaneously translating the fiber along its axis and the focusing cylindrical lens in the orthogonal direction by means of piezoelectric actuators. The grating plane tilt angles up to 10.

View Article and Find Full Text PDF

The combined effect of chromatic dispersion and conical diffraction (i.e., off-plane diffraction) in femtosecond laser inscription of fiber Bragg gratings using the phase mask technique is characterized by measuring the light intensity distribution after the phase mask.

View Article and Find Full Text PDF

Narrowband high-temperature stable fiber Bragg gratings (FBGs) can be made by introducing a π-phase shift in the middle of a Type II periodic grating structure. This creates a passband inside the wavelength rejection band. During the inscription of Type II Bragg gratings broadband, optical loss is induced in the fiber core as a result of interaction between the inscription beam and the silica host.

View Article and Find Full Text PDF

Type II π-phase-shifted Bragg gratings stable up to ~1000°C are written inside a standard single mode silica optical fiber (SMF-28) with infrared femtosecond pulses and a special phase mask. Inscription through the protective polyimide fiber coating is also demonstrated. The birefringence of the Bragg gratings and, as a result, the polarization dependence of their spectra are strongly affected by the femtosecond laser polarization.

View Article and Find Full Text PDF

This paper reports the testing results of radiation resistant fiber Bragg grating (FBG) in random air-line (RAL) fibers in comparison with FBGs in other radiation-hardened fibers. FBGs in RAL fibers were fabricated by 80 fs ultrafast laser pulse using a phase mask approach. The fiber Bragg gratings tests were carried out in the core region of a 6 MW MIT research reactor (MITR) at a steady temperature above 600°C and an average fast neutron (>1 MeV) flux >1.

View Article and Find Full Text PDF

The femtosecond laser-induced fiber Bragg grating is an effective sensor technology that can be deployed in harsh environments. Depending on the optical fiber chosen and the inscription parameters that are used, devices suitable for high temperature, pressure, ionizing radiation and strain sensor applications are possible. Such devices are appropriate for aerospace or energy production applications where there is a need for components, instrumentation and controls that can function in harsh environments.

View Article and Find Full Text PDF

Very short Type I and Type II Bragg gratings, on the order of 100 µm in length, are written through the protective polyimide coating of high NA and standard single mode silica optical fibers with infrared femtosecond pulses and a phase mask. By exploiting the transverse walk-off of apertured diffracted beams produced by the phase mask and a slit placed proximate the mask, complex grating structures are fabricated and characterized. These gratings are suitable for structural health monitoring based on acoustic measurements or localized high-temperature measurements.

View Article and Find Full Text PDF

Nonlinear photoluminescence imaging is used to visualize the intensity distribution of femtosecond laser pulses inside the optical fiber during Bragg grating inscription based on side illumination through a phase mask. This technique, which results in direct imaging of the inscription laser field inside the optical fiber, facilitates i) the characterization of the laser focus in the vicinity of the fiber core and ii) the optimization of the fiber alignment with respect to the laser focus while using pulses with energies several times lower than those used during the actual inscription process. The applicability of this imaging technique is demonstrated for Bragg grating inscription in different optical fibers, including direct inscription through the fiber coating.

View Article and Find Full Text PDF

Periodic planar nanostructures are found in Type II-IR Bragg gratings produced in SMF-28 fiber by side-illuminating it with infrared femtosecond-laser pulses through a phase mask. The planar nanostructures are aligned perpendicular to the laser polarization, as demonstrated using scanning electron microscopy analysis of cleaved fiber samples. Dark field optical microscopy is employed for real-time monitoring of structural changes occurring inside the fiber during the inscription process.

View Article and Find Full Text PDF

A novel type of fiber Bragg grating is produced by annealing a type I-like grating that is written with multiple infrared femtosecond laser pulses through a phase mask under conditions that are typically used to fabricate thermally stable type II gratings. This new grating is created through a process similar to a regenerative one and displays low loss and high resilience in a 1000 °C ambient environment. Such gratings are ideally suited for quasi-distributed sensing at high temperatures.

View Article and Find Full Text PDF

This work represents experimental demonstration of nonlinear diffraction in an orientation-patterned semiconducting material. By employing a new transverse geometry of interaction, three types of second-order nonlinear diffraction have been identified according to different configurations of quasi-phase matching conditions. Specifically, nonlinear Čerenkov diffraction is defined by the longitudinal quasi-phase matching condition, nonlinear Raman-Nath diffraction satisfies only the transverse quasi-phase matching condition, and nonlinear Bragg diffraction fulfils the full vectorial quasi-phase matching conditions.

View Article and Find Full Text PDF

New forms of electron beams have been intensively investigated recently, including vortex beams carrying orbital angular momentum, as well as Airy beams propagating along a parabolic trajectory. Their traits may be harnessed for applications in materials science, electron microscopy, and interferometry, and so it is important to measure their properties with ease. Here, we show how one may immediately quantify these beams' parameters without need for additional fabrication or nonstandard microscopic tools.

View Article and Find Full Text PDF

In this article we compare the results of micromachining of fused silica and silicon with tightly focused scalar (viz., circularly and linearly polarized) and vector (viz., azimuthally and radially polarized) femtosecond laser pulses.

View Article and Find Full Text PDF

We demonstrate experimentally that, in a tight focusing geometry, circularly polarized femtosecond laser vortex pulses ablate material differently depending on the handedness of light. This effect offers an additional degree of freedom to control the shape and size of laser-machined structures on a subwavelength scale.

View Article and Find Full Text PDF

We demonstrate that airborne light-absorbing particles can be photophoretically trapped and moved inside an optical lattice formed by multiple-beam interference. This technique allows simultaneous three-dimensional manipulation of multiple micro-objects in gases.

View Article and Find Full Text PDF

We demonstrate that micron-sized light-absorbing particles can be trapped and transported photophoretically in air using an optical bottle formed inside the focal volume of a lens with a controlled amount of spherical aberration. This optical fiber-based single beam trap can be used in numerous applications where true 3D manipulation and delivery of airborne micro-objects is required.

View Article and Find Full Text PDF

We utilize the interaction of tightly focused ultrashort pulses with transparent media to imprint their local polarization in the focal region. In particular, we demonstrate that this technique allows for a subwavelength resolution diagnostic of complex polarization states including the presence of the longitudinal component of the electric field. Moreover, we demonstrate the first ever material ablation with the longitudinal electric field of femtosecond pulses.

View Article and Find Full Text PDF

In this Letter we present the first (to our knowledge) demonstration of material modification using tightly focused single femtosecond laser vortex pulses. Double-charge femtosecond vortices were synthesized with a polarization-singularity beam converter based on light propagation in a uniaxial anisotropic medium and then focused using moderate- and high-NA optics (viz., NA=0.

View Article and Find Full Text PDF