Publications by authors named "Cyril Deroy"

Climate change presents a mounting challenge with profound impacts on ocean and marine ecosystems, leading to significant environmental, health, and economic consequences. Microfluidic technologies, with their unique capabilities, play a crucial role in understanding and addressing the marine aspects of the climate crisis. These technologies leverage quantitative, precise, and miniaturized formats that enhance the capabilities of sensing, imaging, and molecular tools.

View Article and Find Full Text PDF

Assays mimicking in vitro the concentration gradients triggering biological responses like those involved in fighting infections and blood clotting are essential for biomedical research. Microfluidic assays prove especially attractive as they allow precise control of gradient shape allied to a reduction in scale. Conventional microfluidic devices are fabricated using solid plastics that prevent direct access to responding cells.

View Article and Find Full Text PDF

Microfluidic devices are widely used in many fields of biology, but a key limitation is that cells are typically surrounded by solid walls, making it hard to access those that exhibit a specific phenotype for further study. Here, we provide a general and flexible solution to this problem that exploits the remarkable properties of microfluidic circuits with fluid walls─transparent interfaces between culture media and an immiscible fluorocarbon that are easily pierced with pipets. We provide two proofs of concept in which specific cell subpopulations are isolated and recovered: (i) murine macrophages chemotaxing toward complement component 5a and (ii) bacteria () in developing biofilms that migrate toward antibiotics.

View Article and Find Full Text PDF

Few microfluidic devices are used in biomedical labs, despite the obvious potential; reasons given include the devices are rarely made with cell-friendly materials, and liquids are inaccessibly buried behind solid confining walls. An open microfluidic approach is reviewed in which aqueous circuits with almost any imaginable 2D shape are fabricated in minutes on standard polystyrene Petri dishes by reshaping two liquids (cell-culture media plus an immiscible and bioinert fluorocarbon, FC40). Then, the aqueous phase becomes confined by fluid FC40 walls firmly pinned to the dish by interfacial forces.

View Article and Find Full Text PDF

The aqueous phase in traditional microfluidics is usually confined by solid walls; flows through such systems are often predicted accurately. As solid walls limit access, open systems are being developed in which the aqueous phase is partly bounded by fluid walls (interfaces with air or immiscible liquids). Such fluid walls morph during flow due to pressure gradients, so predicting flow fields remains challenging.

View Article and Find Full Text PDF

There is an unmet demand for microfluidics in biomedicine. This paper describes contactless fabrication of microfluidic circuits on standard Petri dishes using just a dispensing needle, syringe pump, three-way traverse, cell-culture media, and an immiscible fluorocarbon (FC40). A submerged microjet of FC40 is projected through FC40 and media onto the bottom of a dish, where it washes media away to leave liquid fluorocarbon walls pinned to the substrate by interfacial forces.

View Article and Find Full Text PDF

Single-cell isolation and cloning are essential steps in many applications, ranging from the production of biotherapeutics to stem cell therapy. Having confidence in monoclonality in such applications is essential from both research and commercial perspectives, for example, to ensure that data are of high quality and regulatory requirements are met. Consequently, several approaches have been developed to improve confidence in monoclonality.

View Article and Find Full Text PDF

An effective transformation of the cell culture dishes that biologists use every day into microfluidic devices would open many avenues for miniaturizing cell-based workflows. In this article, we report a simple method for creating microfluidic arrangements around cells already growing on the surface of standard petri dishes, using the interface between immiscible fluids as a "building material." Conventional dishes are repurposed into sophisticated microfluidic devices by reshaping, on demand, the fluid structures around living cells.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionce745h2kfokqs6otn69vfcoumpavt2uk): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once