The objective of the study is to evaluate modified-carbon screen-printed working electrodes (SPE) combined with square wave anodic stripping voltammetry (SWASV) to determine electrolabile and total copper in soils with the perspective to assess the environmental hazard resulting from copper anthropogenic contamination. The voltammetric method was investigated using a mineralized certified reference soil such that it can be assumed that the copper was totally under electrolabile form in the solution of mineralized soil. In optimal conditions, a copper recovery of 97% and a relative standard deviation (RSD) of 9% were found.
View Article and Find Full Text PDFIn order to graft cyanoaromatic molecules onto various inert supports, we designed two new cyanoanthracene derivatives of benzo[b]triphenylene-9,14-dicarbonitrile (DBTP, 1), which already demonstrated good photosensitizing properties. We synthesized 3-(N-hydroxypropyl)carboxamido-9,14-dicyanobenzo[b]triphenylene, 3 and 3-(N-N0-Boc-aminohexyl)carboxamido-9,14-dicyanobenzo[b]triphenylene, 4 and compared their photophysical properties in acetonitrile relative to those of the parent compound 1 and its carboxylic derivative 9,14-dicyanobenzo[b]triphenylene-3-carboxylic acid, 2. The transient species were analysed and the quantum yields of singlet oxygen production (ΦΔ) determined in acetonitrile.
View Article and Find Full Text PDFA new method using cheap homemade dual-electrodes has been developed to measure the antioxidant capacity of phenolic compounds. These micro-sized electrodes are elaborated by successive screen-printing of conductive ink and insulator layers and are then used as generator/collector sensors. Cyclic voltammetry and chronoamperometry with a bipotentiostat have been used to test and characterize these sensors.
View Article and Find Full Text PDFThe cyanoanthracene derivative, benzo[b]triphenylene-9,14-dicarbonitrile (1) can be prepared readily with a graftable function while maintaining (1)O(2) photosensitizing properties comparable to those of the standard compound 9,10-dicyanoanthracene (DCA). In view of the high potential of the derivatives of 1 for photooxidation reactions under heterogeneous conditions, we compared the photophysical properties of 1 in solution with those of DCA. In pursuing the comparison of 1 and DCA, we observed small but significant changes of the vibronic bands in the electronic absorption spectra of DCA in different solvents, which were well correlated with solvent polarity, similar to the pyrene polarity scale.
View Article and Find Full Text PDFAddition of formate on the dicationic cluster [Pd(3)(dppm)(3)(mu(3)-CO)](2+) (dppm=bis(diphenylphosphinomethane) affords quantitatively the hydride cluster [Pd(3)(dppm)(3)(mu(3)-CO)(mu(3)-H)](+). This new palladium-hydride cluster has been characterised by (1)H NMR, (31)P NMR and UV/Vis spectroscopy and MALDI-TOF mass spectrometry. The unambiguous identification of the capping hydride was made from (2)H NMR spectroscopy by using DCO(2) (-) as starting material.
View Article and Find Full Text PDFA new aspect of reactivity of the cluster [Pd3(dppm)3(micro3-CO)]n+, ([Pd3]n+, n = 2, 1, 0) with the low-valent metal-metal-bonded Pd2(dppm)2Cl2 dimer (Pd2Cl2) was observed using electrochemical techniques. The direct reaction between [Pd3]2+ and Pd2Cl2 in THF at room temperature leads to the known [Pd3(dppm)3(micro3-CO)(Cl)]+ ([Pd3(Cl)]+) adduct and the monocationic species Pd2(dppm)2Cl+ (very likely as Pd2(dppm)2(Cl)(THF)+, [Pd2Cl]+) as unambiguously demonstrated by UV-vis and 31P NMR spectroscopy. In this case, [Pd3]2+ acts as a strong Lewis acid toward the labile Cl- ion, which weakly dissociates from Pd2Cl2 (i.
View Article and Find Full Text PDFThe title cluster, [Pd(3)(mu(3)-CO)(dppm)(3)](2+) (dppm=bis(diphenylphosphino)methane), reacts with one equivalent of hydroxide anions (OH(-)), from tetrabutylammonium hydroxide (Bu(4)NOH), to give the paramagnetic [Pd(3)(mu(3)-CO)(dppm)(3)](+) species. Reaction with another equivalent of OH(-) leads to the zero-valent compound [Pd(3)(mu(3)-CO)(dppm)(3)](0). From electron paramagnetic resonance analysis of the reaction medium using the spin-trap agent 5,5-dimethyl-1-pyrroline-N-oxide (DMPO), the 2-tetrahydrofuryl or methyl radicals, deriving from the tetrahydrofuran (THF) or dimethyl sulfoxide (DMSO) solvent, respectively, were detected.
View Article and Find Full Text PDF