The radionuclides Sc, 44g/mSc, and Sc can be produced cost-effectively in sufficient yield for medical research and applications by irradiating natTi and natV target materials with protons. Maximizing the production yield of the therapeutic Sc in the highest cross section energy range of 24-70 MeV results in the co-production of long-lived, high-γ-ray-energy Sc and Sc contaminants if one does not use enriched target materials. Mass separation can be used to obtain high molar activity and isotopically pure Sc radionuclides from natural target materials; however, suitable operational conditions to obtain relevant activity released from irradiated natTi and natV have not yet been established at CERN-MEDICIS and ISOLDE.
View Article and Find Full Text PDFSamarium-153 is a promising theranostic radionuclide, but low molar activities (Am) resulting from its current production route render it unsuitable for targeted radionuclide therapy (TRNT). Recent efforts combining neutron activation of 152Sm in the SCK CEN BR2 reactor with mass separation at CERN/MEDICIS yielded high-Am 153Sm. In this proof-of-concept study, we further evaluated the potential of high-Am 153Sm for TRNT by radiolabeling to DOTA-TATE, a well-established carrier molecule binding the somatostatin receptor 2 (SSTR2) that is highly expressed in gastroenteropancreatic neuroendocrine tumors.
View Article and Find Full Text PDFWe performed the direct measurement of second harmonic generation and sum frequency generation phase-matching directions in the organic N-benzyl-2-methyl-4-nitroaniline crystal over its visible and near-infrared transparency range. The fit of these data allowed us to refine the Sellmeier equations of the three principal refractive indices in this range. With these equations, we improved the calculated tuning curves of terahertz emission from a phase-matched difference frequency process.
View Article and Find Full Text PDF