Chinese Hamster Ovary cells have been widely used as host cells for production of recombinant therapeutic molecules. Cell line development is a decisive step, which must be carried out with an efficient process. In particular, degree of selection stringency is an important parameter for identification of rare, high-producing cell lines.
View Article and Find Full Text PDFThe involvement of a WRKY transcription factor in the regulation of lignan biosynthesis in flax using a hairy root system is described. Secoisolariciresinol is the main flax lignan synthesized by action of LuPLR1 (pinoresinol-lariciresinol reductase 1). LuPLR1 gene promoter deletion experiments have revealed a promoter region containing W boxes potentially responsible for the response to Fusarium oxysporum.
View Article and Find Full Text PDFThe LuPLR1 gene encodes a pinoresinol lariciresinol reductase responsible for the biosynthesis of (+)-secoisolariciresinol, a cancer chemopreventive lignan, highly accumulated in the seedcoat of flax (Linum usitatissimum L.). Abscisic acid (ABA) plays a key role in the regulation of LuPLR1 gene expression and lignan accumulation in both seeds and cell suspensions, which require two cis-acting elements (ABRE and MYB2) for this regulation.
View Article and Find Full Text PDFThis paper provides an overview on activity, stereospecificity, expression and regulation of pinoresinol-lariciresinol reductases in plants. These enzymes are shared by the pathways to all 8-8' lignans derived from pinoresinol. Pinoresinol-lariciresinol reductases (PLR) are enzymes involved in the lignan biosynthesis after the initial dimerization of two monolignols.
View Article and Find Full Text PDFFlaxseeds are a functional food representing, by far, the richest natural grain source of lignans, and accumulate substantial amounts of other health beneficial phenolic compounds (i.e., flavonols, hydroxycinnamic acids).
View Article and Find Full Text PDFAccurate and efficient demonstrations of protein localizations to the vacuole or tonoplast remain strict prerequisites to decipher the role of vacuoles in the whole plant cell biology and notably in defence processes. In this chapter, we describe a reliable procedure of protein subcellular localization study through transient transformations of Catharanthus roseus or onion cells and expression of fusions with fluorescent proteins allowing minimizing artefacts of targeting.
View Article and Find Full Text PDFhairy root lines were established from hypocotyl pieces using strains LBA 9402 and ATCC 15834. Both strains were effective for transformation but induction of hairy root phenotype was more stable with strain ATCC 15834. Whereas similar accumulation patterns were observed in podophyllotoxin-related compounds (6-methoxy-podophyllotoxin, podophyllotoxin and deoxypodophyllotoxin), significant quantitative variations were noted between root lines.
View Article and Find Full Text PDFThis study provides new insights into the biosynthesis regulation and in planta function of the lignan yatein in flax leaves. Pinoresinol-lariciresinol reductases (PLR) catalyze the conversion of pinoresinol into secoisolariciresinol (SECO) in lignan biosynthesis. Several lignans are accumulated in high concentrations, such as SECO accumulated as secoisolariciresinol diglucoside (SDG) in seeds and yatein in aerial parts, in the flax plant (Linum usitatissimum L.
View Article and Find Full Text PDFElucidation of the monoterpene indole alkaloid biosynthesis has recently progressed in Apocynaceae through the concomitant development of transcriptomic analyses and reverse genetic approaches performed by virus-induced gene silencing (VIGS). While most of these tools have been primarily adapted for the Madagascar periwinkle (Catharanthus roseus), the VIGS procedure has scarcely been used on other Apocynaceae species. For instance, Rauwolfia sp.
View Article and Find Full Text PDFPodophyllotoxin, a lignan still extracted from the rhizomes of (Berberidaceae), is the starting molecule for the semisynthesis of widely used anticancer drugs such as etoposide. However, this source is threatened by the over-collection of . Plants belonging to the Linaceae and Cupressaceae families could be attractive alternative sources with species that contain the lignan podophyllotoxin or its precursors and derivatives.
View Article and Find Full Text PDFFlaxseed accumulates in its seedcoat a macromolecular complex composed of lignan (secoisolariciresinol diglucoside, SDG), flavonol (herbacetin diglucoside, HDG) and hydroxycinnamic acids (p-couramic, caffeic and ferulic acid glucosides). Their antioxidant and/or cancer chemopreventive properties support their interest in human health and therefore, the demand for their extraction. In the present study, ultrasound-assisted extraction (UAE) of flaxseed phenolic compounds was investigated.
View Article and Find Full Text PDFDue to their pronounced cytotoxic activity, a number of aryltetralin lignans (ATLs), such as podophyllotoxin (PTOX), are used as antitumor compounds. The production of such molecules from entire plants or plant cell-tissue-organ cultures is thus of interest to the pharmaceutical industry. Hairy root cultures constitute a good tool not only for phytochemical production but also for investigating plant secondary metabolism.
View Article and Find Full Text PDFRNAi technology was applied to down regulate LuPLR1 gene expression in flax (Linum usitatissimum L.) seeds. This gene encodes a pinoresinol lariciresinol reductase responsible for the synthesis of (+)-secoisolariciresinol diglucoside (SDG), the major lignan accumulated in the seed coat.
View Article and Find Full Text PDFFlax (Linum usitatissimum L.) seeds are widely used for oil extraction and the cold-pressed flaxseed (or linseed) cakes obtained during this process constitute a valuable by-product. The flavonol herbacetin diglucoside (HDG) has been previously reported as a constituent of the flaxseed lignan macromolecule linked through ester bonds to the linker molecule hydroxymethylglutaric acid.
View Article and Find Full Text PDFA Linum usitatissimum LuERA1 gene encoding a putative ortholog of the ERA1 (Enhanced Response to ABA 1) gene of Arabidopsis thaliana (encoding the beta subunit of a farnesyltransferase) was analyzed in silico and for its expression in flax. The gene and the protein sequences are highly similar to other sequences already characterized in plants and all the features of a farnesyltransferase were detected. Molecular modeling of LuERA1 protein confirmed its farnesyltransferase nature.
View Article and Find Full Text PDFType 2 diabetes mellitus (T2DM) is one of the common global diseases. Flaxseed is by far the richest source of the dietary lignans (i.e.
View Article and Find Full Text PDFPinoresinol lariciresinol reductase 1, encoded by the LuPLR1 gene in flax (Linum usitatissimum L.), is responsible for the biosynthesis of (+)-secoisolariciresinol, a cancer chemopreventive phytoestrogenic lignan accumulated in high amount in the hull of flaxseed. Our recent studies have demonstrated a key role of abscisic acid (ABA) in the regulation of LuPLR1 gene expression and thus of the (+)-secoisolariciresinol synthesis during the flax seedcoat development.
View Article and Find Full Text PDFBackground: While seed biology is well characterized and numerous studies have focused on this subject over the past years, the regulation of seed coat development and metabolism is for the most part still non-elucidated. It is well known that the seed coat has an essential role in seed development and its features are associated with important agronomical traits. It also constitutes a rich source of valuable compounds such as pharmaceuticals.
View Article and Find Full Text PDFSecoisolariciresinol diglucoside (SDG), the main phytoestrogenic lignan of Linum usitatissimum, is accumulated in the seed coat of flax during its development and pinoresinol-lariciresinol reductase (PLR) is a key enzyme in flax for its synthesis. The promoter of LuPLR1, a flax gene encoding a pinoresinol lariciresinol reductase, contains putative regulatory boxes related to transcription activation by abscisic acid (ABA). Gel mobility shift experiments evidenced an interaction of nuclear proteins extracted from immature flax seed coat with a putative cis-acting element involved in ABA response.
View Article and Find Full Text PDF