Gravity-driven collapses involving large amounts of dense granular material, such as landslides, avalanches, or rock falls, in a geophysical context, represent significant natural hazards. Understanding their complex dynamics is hence a key concern for risk assessment. In the present work, we report experiments on the collapse of quasi-two-dimensional dry granular columns under the effect of gravity, where both the velocity at which the grains are released and the aspect ratio of the column are varied to investigate the dynamics of the falling grains.
View Article and Find Full Text PDFModeling of tsunami waves generated by subaerial landslides is important to provide accurate hazard and risk assessments in coastal areas. We perform small-scale laboratory experiments where a tsunami-like wave is generated by the gravity-driven collapse of a subaerial granular column into water. We show that the maximal amplitude reached near-shore by the generated wave in our experiments is linked to the instantaneous immersed volume of grains and to the ultimate immersed deposit.
View Article and Find Full Text PDF