RE-doped β-GaO seems attractive for future high-power LEDs operating in high irradiation environments. In this work, we pay special attention to the issue of radiation-induced defect anisotropy in β-GaO, which is crucial for device manufacturing. Using the RBS/c technique, we have carefully studied the structural changes caused by implantation and post-implantation annealing in two of the most commonly used crystallographic orientations of β-GaO, namely the (-201) and (010).
View Article and Find Full Text PDFSilicon carbide has been considered a material for use in the construction of advanced high-temperature nuclear reactors. However, one of the most important design issues for future reactors is the development of structural defects in SiC under a strong irradiation field at high temperatures. To understand how high temperatures affect radiation damage, SiC single crystals were irradiated at room temperature and after being heated to 800 °C with carbon and silicon ions of energies ranging between 0.
View Article and Find Full Text PDFRare earth-doped zinc oxide (ZnO:RE) systems are attractive for future optoelectronic devices such as phosphors, displays, and LEDs with emission in the visible spectral range, working even in a radiation-intense environment. The technology of these systems is currently under development, opening up new fields of application due to the low-cost production. Ion implantation is a very promising technique to incorporate rare-earth dopants into ZnO.
View Article and Find Full Text PDF