The first two ionic states of chlorofluoroethenes were studied by using both time-independent and time-dependent density-functional theories. We calculated the equilibrium geometries and harmonic vibrational frequencies of 1,1-, cis-, and trans-C2H2FCl and their cations by using the B3LYP and B3PW91 functionals together with the cc-pVTZ and aug-cc-pVTZ basis sets. Franck-Condon factors were computed by the method developed in our group, in which the Duschinsky effect was treated explicitly.
View Article and Find Full Text PDFWe have developed an analytical approach for computing Franck-Condon integrals (FCIs) of harmonic oscillators (HOs) with arbitrary dimensions in which the mode-mixing Duschinsky effect is taken into account. A general formula of FCIs of HOs was obtained and was applied to study the photoelectron spectroscopy of vinyl alcohol and ovalene (C(32)H(14)). The equilibrium geometries, harmonic vibrational frequencies and normal modes of vinyl alcohol, ovalene, and their cations were computed at the B3LYP/aug-cc-pVTZ or the B3LYP/6-31G(d) level, from which Franck-Condon factors were calculated and photoelectron spectra were simulated.
View Article and Find Full Text PDF