Motivation: The activity of a transcription factor (TF) in a sample of cells is the extent to which it is exerting its regulatory potential. Many methods of inferring TF activity from gene expression data have been described, but due to the lack of appropriate large-scale datasets, systematic and objective validation has not been possible until now.
Results: We systematically evaluate and optimize the approach to TF activity inference in which a gene expression matrix is factored into a condition-independent matrix of control strengths and a condition-dependent matrix of TF activity levels.
Unlabelled: Cryptococcus neoformans is a ubiquitous, opportunistic fungal pathogen that kills over 600,000 people annually. Here, we report integrated computational and experimental investigations of the role and mechanisms of transcriptional regulation in cryptococcal infection. Major cryptococcal virulence traits include melanin production and the development of a large polysaccharide capsule upon host entry; shed capsule polysaccharides also impair host defenses.
View Article and Find Full Text PDF