Publications by authors named "Cynthia Yu Wai Man"

Purpose: To investigate the antifibrotic and vasoconstrictor effects of adrenaline in Schlemm's canal and suprachoroidal minimally invasive glaucoma surgery (MIGS).

Methods: Human trabecular meshwork (TM) cells were treated with different concentrations of adrenaline (0%, 0.0005%, 0.

View Article and Find Full Text PDF

Monoclonal antibodies (mAbs) have garnered substantial attention within the field of ophthalmology and can be used to suppress scar formation after minimally invasive glaucoma surgeries. Here, by controlling mAb passive diffusion, we developed a polymeric, rate-controlling membrane reservoir loaded with poly(lactic-co-glycolic acid) microspheres to deliver mAb for several weeks. Different parameters were tested to ensure that the microspheres achieved a good quality characteristic, and our results showed that 1 %W/V emulsifier with 5 %W/V NaCl achieved mAb-loaded microspheres with the highest stability, encapsulation efficiency and minimal burst release.

View Article and Find Full Text PDF

Timolol maleate (TML) is a beta-blocker drug that is commonly used to lower the intraocular pressure in glaucoma. This study focused on using a 3D printing (3DP) method for the manufacturing of an ocular, implantable, sustained-release drug delivery system (DDS). Polycaprolactone (PCL), and PCL with 5 or 10% TML implants were manufactured using a one-step 3DP process.

View Article and Find Full Text PDF

Adrenaline is a sympathomimetic drug used to maintain pupil dilation and to decrease the risk of bleeding. The aim of this study was to demonstrate if adrenaline could exert antifibrotic effects in glaucoma surgery. Adrenaline was tested in fibroblast-populated collagen contraction assays and there was a dose-response decrease in fibroblast contractility: matrices decreased to 47.

View Article and Find Full Text PDF

Glaucoma is a chronic and progressive neurodegenerative disease characterized by the loss of retinal ganglion cells and visual field defects, and currently affects around 1% of the world's population. Elevated intraocular pressure (IOP) is the best-known modifiable risk factor and a key therapeutic target in hypertensive glaucoma. The trabecular meshwork (TM) is the main site of aqueous humor outflow resistance and therefore a critical regulator of IOP.

View Article and Find Full Text PDF

Lipid-based nanoparticles have recently shown great promise, establishing themselves as the gold standard in delivering novel RNA therapeutics. However, research on the effects of storage on their efficacy, safety, and stability is still lacking. Herein, the impact of storage temperature on two types of lipid-based nanocarriers, lipid nanoparticles (LNPs) and receptor-targeted nanoparticles (RTNs), loaded with either DNA or messenger RNA (mRNA), is explored and the effects of different cryoprotectants on the stability and efficacy of the formulations are investigated.

View Article and Find Full Text PDF

Objectives: To develop a sustained release 5-fluorouracil (5-FU) implant by three-dimensional (3D) printing to effectively prevent conjunctival fibrosis after glaucoma surgery.

Methods: 3D-printed implants composed of polycaprolactone (PCL) and chitosan (CS) were fabricated by heat extrusion technology and loaded with 1% 5-FU. Light microscopy and scanning electron microscopy were used to study the surface morphology.

View Article and Find Full Text PDF

The primary cause of failure for minimally invasive glaucoma surgery (MIGS) is fibrosis in the trabecular meshwork (TM) that regulates the outflow of aqueous humour, and no anti-fibrotic drug is available for intraocular use in MIGS. The myocardin-related transcription factor/serum response factor (MRTF/SRF) pathway is a promising anti-fibrotic target. This study aims to utilise a novel lipid nanoparticle (LNP) to deliver MRTF-B siRNA into human TM cells and to compare its effects with those observed in human conjunctival fibroblasts (FF).

View Article and Find Full Text PDF

3D printing was invented thirty years ago. However, its application in healthcare became prominent only in recent years to provide solutions for drug delivery and clinical challenges, and is constantly evolving. This cost-efficient technique utilises biocompatible materials and is used to develop model implants to provide a greater understanding of human anatomy and diseases, and can be used for organ transplants, surgical planning and for the manufacturing of advanced drug delivery systems.

View Article and Find Full Text PDF

Background/aims: To evaluate the efficacy and safety of the PreserFlo MicroShunt glaucoma device in a multicentre cohort study.

Methods: All consecutive patients who received the microshunt with mitomycin-C (MMC) 0.4 mg/mL from May 2019 to September 2020 in three UK tertiary centres.

View Article and Find Full Text PDF

Aim: To determine the long-term outcomes of a cohort of complex patients with primary congenital glaucoma, aniridia and anterior segment dysgenesis.

Methods: Retrospective consecutive series between 1990-2021 in two UK tertiary centres: Guy's and St Thomas' NHS Foundation Trust and King's College Hospital NHS Foundation Trust. We recorded the number and types of surgical and laser treatments along with preoperative and postoperative data, including intraocular pressures (IOP) and anti-glaucoma medications.

View Article and Find Full Text PDF

During the last decade, the fields of advanced and personalized therapeutics have been constantly evolving, utilizing novel techniques such as gene editing and RNA therapeutic approaches. However, the method of delivery and tissue specificity remain the main hurdles of these approaches. Exosomes are natural carriers of functional small RNAs and proteins, representing an area of increasing interest in the field of drug delivery.

View Article and Find Full Text PDF

The master regulator of the fibrosis cascade is the myocardin-related transcription factor/serum response factor (MRTF/SRF) pathway, making it a key target for anti-fibrotic therapeutics. In the past, inhibitors and small interfering RNAs (siRNAs) targeting the gene have been deployed to counter fibrosis in the eye, with the latter showing promising results. However, the biggest challenge in implementing siRNA therapeutics is the method of delivery.

View Article and Find Full Text PDF

The use of RNA interference technology has proven to inhibit the expression of many target genes involved in the underlying pathogenesis of several diseases affecting various systems. First established in in vitro and later in animal studies, small interfering RNA (siRNA) and antisense oligonucleotide (ASO) therapeutics are now entering clinical trials with the potential of clinical translation to patients. Gene-silencing therapies have demonstrated promising responses in ocular disorders, predominantly due to the structure of the eye being a closed and compartmentalised organ.

View Article and Find Full Text PDF

Purpose: High intensity focused ultrasound (HiFU) is a cyclodestructive therapy for controlling intraocular pressure (IOP) in glaucoma. The mechanism of action is thought to be through destruction of the ciliary epithelium as well as increased uveoscleral outflow. We reviewed the change in aqueous humour dynamics parameters including aqueous humour flow rate, tonographic outflow facility (TOF) and uveoscleral outflow at 12 months.

View Article and Find Full Text PDF

Background: Sustained drug delivery is a large unmet clinical need in glaucoma. Here, we incorporated a Myocardin-Related Transcription Factor/Serum Response Factor inhibitor, CCG-222740, into slow release large unilamellar vesicles derived from the liposomes DOTMA (1,2-di-O-octadecenyl-3-trimethylammonium propane) and DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine), and tested their effects in vitro and in vivo.

Results: The vesicles were spherical particles of around 130 nm and were strongly cationic.

View Article and Find Full Text PDF

We developed an anticancer siRNA delivery system (named HLPR) through modular assembly of endogenous molecules. The structure of HLPR was a tightly condensed siRNA-peptide inner core in turn surrounded by the disordered lipid layer and thin HA coating from which the EGFR-targeted amino acid sequences of YHWYGYTPQNVI partially protrude outside of cell surfaces. Both HA and YHWYGYTPQNVI anchored on HLPR were responsible for targeting CD44 and EGFR overexpressed on the tumor cell surfaces, respectively.

View Article and Find Full Text PDF

RNAi induced by double-stranded small interfering RNA (siRNA) molecules has attracted great attention as a naturally occurring approach to silence gene expression with high specificity. The myocardin-related transcription factor/serum response factor (MRTF/SRF) pathway is a master regulator of cytoskeletal gene expression and, thus, represents a promising target to prevent fibrosis. A major hurdle to implementing siRNA therapies is the method of delivery, and we have, thus, optimized lipid-peptide-siRNA (LPR) nanoparticles containing MRTF-B siRNAs as a targeted approach to prevent conjunctival fibrosis.

View Article and Find Full Text PDF

Importance: Postsurgical fibrosis is a critical determinant of the long-term success of glaucoma surgery, but no reliable biomarkers are currently available to stratify the risk of scarring.

Objective: To compare the clinical phenotype of patients with conjunctival fibrosis after glaucoma surgery with candidate gene expression tissue biomarkers of fibrosis.

Design, Setting, And Participants: In this cross-sectional study, 42 patients were recruited at the time of glaucoma surgery at the Moorfields Eye Hospital from September 1, 2014, to September 1, 2016.

View Article and Find Full Text PDF

Fibrosis-related events play a part in most blinding diseases worldwide. However, little is known about the mechanisms driving this complex multifactorial disease. Here we have carried out the first genome-wide RNA-Sequencing study in human conjunctival fibrosis.

View Article and Find Full Text PDF

The myocardin-related transcription factor/serum response factor (MRTF/SRF) pathway represents a promising therapeutic target to prevent fibrosis. We have tested the effects of new pharmacological inhibitors of MRTF/SRF signalling in a preclinical model of fibrosis. CCG-222740, a novel MRTF/SRF inhibitor, markedly decreased SRF reporter gene activity and showed a greater inhibitory effect on MRTF/SRF target genes than the previously described MRTF-A inhibitor CCG-203971.

View Article and Find Full Text PDF

Fibrosis-related events play a part in the pathogenesis or failure of treatment of virtually all the blinding diseases around the world, and also account for over 40% of all deaths. It is well established that the eye and other tissues of some group of patients, for example Afro-Caribbean people, scar worse than others. However, there is a current lack of reliable biomarkers to stratify the risk of scarring and postsurgical fibrosis in the eye.

View Article and Find Full Text PDF

There is increasing evidence that the Myocardin-related transcription factor/Serum response factor (MRTF/SRF) pathway plays a key role in fibroblast activation and that knocking down MRTF can lead to reduced scarring and fibrosis. Here, we have developed a receptor-targeted liposome-peptide-siRNA nanoparticle as a non-viral delivery system for MRTF-B siRNA in conjunctival fibrosis. Using 50 nM siRNA, the MRTF-B gene was efficiently silenced by 76% and 72% with LYR and LER nanoparticles, respectively.

View Article and Find Full Text PDF