Purpose: The National Cancer Institute-Children's Oncology Group Pediatric MATCH trial aimed to facilitate evaluation of molecular-targeted therapies in biomarker-selected cohorts of childhood and young adult patients with cancer by screening tumors for actionable alterations.
Patients And Methods: Tumors from patients age 1-21 years with refractory solid tumors, lymphomas, or histiocytic disorders were subjected to cancer gene panel sequencing and limited immunohistochemistry to identify actionable alterations for assignment to phase II treatment arms. The rates of treatment arm assignment and enrollment were compared between clinical and demographic groups.
Neuroblastoma is a paediatric malignancy that typically arises in early childhood, and is derived from the developing sympathetic nervous system. Clinical phenotypes range from localized tumours with excellent outcomes to widely metastatic disease in which long-term survival is approximately 40% despite intensive therapy. A previous genome-wide association study identified common polymorphisms at the LMO1 gene locus that are highly associated with neuroblastoma susceptibility and oncogenic addiction to LMO1 in the tumour cells.
View Article and Find Full Text PDFNeuroblastoma is a cancer of the sympathetic nervous system that accounts for approximately 10% of all pediatric oncology deaths. Here, we report a genome-wide association study of 2,817 neuroblastoma cases and 7,473 controls. We identified two new associations at 6q16, the first within HACE1 (rs4336470; combined P=2.
View Article and Find Full Text PDFThe mechanisms underlying genetic susceptibility at loci discovered by genome-wide association study (GWAS) approaches in human cancer remain largely undefined. In this study, we characterized the high-risk neuroblastoma association at the BRCA1-related locus, BARD1, showing that disease-associated variations correlate with increased expression of the oncogenically activated isoform, BARD1β. In neuroblastoma cells, silencing of BARD1β showed genotype-specific cytotoxic effects, including decreased substrate-adherence, anchorage-independence, and foci growth.
View Article and Find Full Text PDFNeuroblastoma is a childhood cancer that is often fatal despite intense multimodality therapy. In an effort to identify therapeutic targets for this disease, we performed a comprehensive loss-of-function screen of the protein kinome. Thirty kinases showed significant cellular cytotoxicity when depleted, with loss of the cell cycle checkpoint kinase 1 (CHK1/CHEK1) being the most potent.
View Article and Find Full Text PDFNeuroblastoma is a childhood cancer of the sympathetic nervous system that accounts for approximately 10% of all paediatric oncology deaths. To identify genetic risk factors for neuroblastoma, we performed a genome-wide association study (GWAS) on 2,251 patients and 6,097 control subjects of European ancestry from four case series. Here we report a significant association within LIM domain only 1 (LMO1) at 11p15.
View Article and Find Full Text PDFCommon copy number variations (CNVs) represent a significant source of genetic diversity, yet their influence on phenotypic variability, including disease susceptibility, remains poorly understood. To address this problem in human cancer, we performed a genome-wide association study of CNVs in the childhood cancer neuroblastoma, a disease in which single nucleotide polymorphism variations are known to influence susceptibility. We first genotyped 846 Caucasian neuroblastoma patients and 803 healthy Caucasian controls at approximately 550,000 single nucleotide polymorphisms, and performed a CNV-based test for association.
View Article and Find Full Text PDFWe conducted a SNP-based genome-wide association study (GWAS) focused on the high-risk subset of neuroblastoma. As our previous unbiased GWAS showed strong association of common 6p22 SNP alleles with aggressive neuroblastoma, we restricted our analysis here to 397 high-risk cases compared to 2,043 controls. We detected new significant association of six SNPs at 2q35 within the BARD1 locus (P(allelic) = 2.
View Article and Find Full Text PDFBackground: Neuroblastoma is a malignant condition of the developing sympathetic nervous system that most commonly affects young children and is often lethal. Its cause is not known.
Methods: We performed a genomewide association study by first genotyping blood DNA samples from 1032 patients with neuroblastoma and 2043 control subjects of European descent using the Illumina HumanHap550 BeadChip.
Background: NCAM is a member of the immunoglobulin superfamily of cell adhesion molecules. While highly expressed on neuroblastoma cells, the relative contribution of the three major NCAM isoforms (120, 140, and 180 kDa) to neuroblastoma biology has not been investigated.
Methods: NCAM protein expression was measured in a neuroblastic tumor tissue microarray (N = 185) by immunohistochemistry.
Neuroblastoma is a heterogeneous neoplasm that has served as a paradigm for the clinical utility of somatically acquired genomic aberrations. DNA copy number alterations (CNA) are currently used to predict prognosis, including MYCN amplification and deletions at chromosome bands 1p36 and 11q23. We predicted that genome-wide assessment of DNA aberrations in neuroblastoma tumors would provide a more precise estimation of clinical phenotype, and could be used to predict outcome.
View Article and Find Full Text PDFNeuroblastoma is remarkable for its clinical heterogeneity and is characterized by genomic alterations that are strongly correlated with tumor behavior. The specific genes that influence neuroblastoma biology and are targeted by genomic alterations remain largely unknown. We quantified mRNA expression in a highly annotated series of 101 prospectively collected diagnostic neuroblastoma primary tumors using an oligonucleotide-based microarray.
View Article and Find Full Text PDFBackground: Neuroblastoma is a childhood cancer with considerable morbidity and mortality. Tumor-derived biomarkers may improve risk stratification.
Methods: We screened 915 samples of neuroblastoma for loss of heterozygosity (LOH) at chromosome bands 1p36 and 11q23.
Genes Chromosomes Cancer
August 2005
We used array-based comparative genomic hybridization (aCGH) to measure genomic copy number alterations (CNAs) in 42 neuroblastoma cell lines with known 1p36.3, 2p24 (MYCN), 11q23, and 17q23 allelic status. All cell lines showed CNAs, with an average of 22.
View Article and Find Full Text PDFSubstantial genomic and functional evidence from primary tumors and cell lines indicates that a consistent region of distal chromosome 1p is deleted in a sizable proportion of human neuroblastomas, suggesting that this region contains one or more tumor suppressor genes. To determine systematically and precisely the location and extent of 1p deletion in neuroblastomas, we performed allelic loss studies of 737 primary neuroblastomas and genotype analysis of 46 neuroblastoma cell lines. Together, the results defined a single region within 1p36.
View Article and Find Full Text PDFRegional genomic alterations resulting from single-copy allelic loss or gain have been well characterized in many human cancers and are often of prognostic relevance. Unbalanced gain of 17q material is common in malignant human neuroblastomas and typically results from unbalanced translocations. Unbalanced 17q gain may be an independent predictor of disease outcome, but technical difficulties with quantifying such gain using fluorescent in situ hybridization gives this method limited clinical applicability.
View Article and Find Full Text PDFMYCN is a biologically and clinically important oncogene in human neuroblastoma as genomic amplification reliably predicts for aggressive tumor behavior and a poor prognosis. However, the mechanism by which MYCN amplification and overexpression contributes to a highly malignant phenotype remains obscure. ID2 is a dominant inhibitor of the RB1 tumor suppressor gene product and recently was suggested to be a direct transcriptional target of MYCN.
View Article and Find Full Text PDFDeletion of the distal short arm of chromosome 1 occurs in 35% of primary neuroblastomas (NBs). These deletions tend to be large and extend to the telomere, but a common region within sub-band 1p36.3 is consistently lost.
View Article and Find Full Text PDF