Publications by authors named "Cynthia Whitchurch"

Xanthines such as caffeine and theobromine are among the most consumed psychoactive stimulants in the world, either as natural components of coffee, tea and chocolate, or as added ingredients. The present study assessed if xanthines affect liver sinusoidal endothelial cells (LSEC). Cultured primary rat LSEC were challenged with xanthines at concentrations typically obtained from normal consumption of xanthine-containing beverages, food or medicines; and at higher concentrations below the in vitro toxic limit.

View Article and Find Full Text PDF

Gram-negative bacteria produce outer membrane vesicles (OMVs) and contain bacterial cargo including nucleic acids and proteins. The proteome of OMVs can be altered by various factors including bacterial growth stage, growth conditions, and environmental factors. However, it is currently unknown if the mechanism of OMV biogenesis can determine their proteome.

View Article and Find Full Text PDF

Historically, many species of bacteria have been reported to produce viable, cell wall deficient (CWD) variants. A variety of terms have been used to refer to CWD bacteria and a plethora of methods described in which to induce, cultivate and propagate them. In this review, we will examine the long history of scientific research on CWD bacteria examining the methods by which CWD bacteria are generated; the requirements for survival in a CWD state; the replicative processes within a CWD state; and the reversion of CWD bacteria into a walled state, or lack thereof.

View Article and Find Full Text PDF

Background: Cochlear implant (CI) infections affect a small, but significant number of patients. Unremitting infections can lead to explantation. Fluorescence hybridization (FISH) and microbial community profiling (MCP) are methods of studying microbial environments of explanted devices that can provide information to reduce morbidity and costs of infected CIs.

View Article and Find Full Text PDF

Recalcitrant chronic infections of implanted medical devices are often linked to the presence of biofilms. The prevention and treatment of medical device-associated infections is a major source of antibiotic use and driver of antimicrobial resistance globally. Lowering the incidence of infection in patients that receive implanted medical devices could therefore significantly improve antibiotic stewardship and reduce patient morbidity.

View Article and Find Full Text PDF

Peroxisomes are recognized as significant platforms for the activation of antiviral innate immunity where stimulation of the key adapter molecule mitochondrial antiviral signaling protein (MAVS) within the RIG-I like receptor (RLR) pathway culminates in the up-regulation of hundreds of ISGs, some of which drive augmentation of multiple innate sensing pathways. However, whether ISGs can augment peroxisome-driven RLR signaling is currently unknown. Using a proteomics-based screening approach, we identified Pex19 as a binding partner of the ISG viperin.

View Article and Find Full Text PDF

Membrane vesicles (MVs) are membrane-bound spherical nanostructures that prevail in all three domains of life. In Gram-negative bacteria, MVs are thought to be produced through blebbing of the outer membrane and are often referred to as outer membrane vesicles (OMVs). We have recently described another mechanism of MV formation in that involves explosive cell-lysis events, which shatters cellular membranes into fragments that rapidly anneal into MVs.

View Article and Find Full Text PDF

Obtaining a comprehensive understanding of the bactericidal mechanisms of natural nanotextured surfaces is crucial for the development of fabricated nanotextured surfaces with efficient bactericidal activity. However, the scale, nature, and speed of bacteria-nanotextured surface interactions make the characterization of the interaction a challenging task. There are currently several different opinions regarding the possible mechanisms by which bacterial membrane damage occurs upon interacting with nanotextured surfaces.

View Article and Find Full Text PDF

Bacterial biofilms are composed of aggregates of cells encased within a matrix of extracellular polymeric substances (EPS). One key EPS component is extracellular DNA (eDNA), which acts as a 'glue', facilitating cell-cell and cell-substratum interactions. We have previously demonstrated that eDNA is produced in biofilms via explosive cell lysis.

View Article and Find Full Text PDF

isolate CF13 is a multidrug-resistant isolate that was recovered in Sydney, Australia, in 2011, from a sputum sample from an individual with cystic fibrosis. The genome sequence of CF13 was completed using long- and short-read technologies.

View Article and Find Full Text PDF

Natural transformation is a mechanism that enables competent bacteria to acquire naked, exogenous DNA from the environment. It is a key process that facilitates the dissemination of antibiotic resistance and virulence determinants throughout bacterial populations. is an opportunistic Gram-negative pathogen that produces large quantities of extracellular DNA (eDNA) that is required for biofilm formation.

View Article and Find Full Text PDF

Manuka honey has broad-spectrum antimicrobial activity, and unlike traditional antibiotics, resistance to its killing effects has not been reported. However, its mechanism of action remains unclear. Here, we investigated the mechanism of action of manuka honey and its key antibacterial components using a transcriptomic approach in a model organism, We show that no single component of honey can account for its total antimicrobial action, and that honey affects the expression of genes in the SOS response, oxidative damage, and quorum sensing.

View Article and Find Full Text PDF

Twitching motility-mediated biofilm expansion occurs via coordinated, multi-cellular collective behaviour to allow bacteria to actively expand across surfaces. Type-IV pili (T4P) are cell-associated virulence factors which mediate twitching motility via rounds of extension, surface attachment and retraction. The Chp chemosensory system is thought to respond to environmental signals to regulate the biogenesis, assembly and twitching motility function of T4P.

View Article and Find Full Text PDF

Chronic wound treatment is becoming increasingly difficult and costly, further exacerbated when wounds become infected. Bacterial biofilms cause most chronic wound infections and are notoriously resistant to antibiotic treatments. The need for new approaches to combat polymicrobial biofilms in chronic wounds combined with the growing antimicrobial resistance crisis means that honey is being revisited as a treatment option due to its broad-spectrum antimicrobial activity and low propensity for bacterial resistance.

View Article and Find Full Text PDF

We report the complete genome of strain PAK, a strain which has been instrumental in the study of a range of virulence and pathogenesis factors and has been used for over 50 years as a laboratory reference strain.

View Article and Find Full Text PDF

Pandoraea species have been isolated from diverse environmental samples and are emerging important respiratory pathogens, particularly in people with cystic fibrosis (CF). In the present study, two bacterial isolates initially recovered from consecutive sputum samples collected from a CF patient and identified as Pandoraea pnomenusa underwent a polyphasic taxonomic analysis. The isolates were found to be Gram-negative, facultative anaerobic motile bacilli and subsequently designated as strains 6399 (=LMG29626=DSM103228) and 7641 (=LMG29627=DSM103229), respectively.

View Article and Find Full Text PDF

Pseudomonas aeruginosa is an extremely successful pathogen able to cause both acute and chronic infections in a range of hosts, utilizing a diverse arsenal of cell-associated and secreted virulence factors. A major cell-associated virulence factor, the Type IV pilus (T4P), is required for epithelial cell adherence and mediates a form of surface translocation termed twitching motility, which is necessary to establish a mature biofilm and actively expand these biofilms. P.

View Article and Find Full Text PDF

Extracellular deoxyribonucleic acid (eDNA) exists in biological environments such as those around medical implants since prokaryotic or eukaryotic cells can undergo processes such as autolysis, necrosis, and apoptosis. For bacteria, eDNA has been shown to be involved in biofilm formation and gene transfer and acts as a nutrient source. In terms of biofilm formation, eDNA in solution has been shown to be very important in increasing attachment; however, very little is known about the role played by surface immobilized eDNA in initiating bacterial attachment and whether the nature of a DNA layer (physically adsorbed or covalently attached, and molecular weight) influences biofilm formation.

View Article and Find Full Text PDF

Biofilms are a typical mode of growth for most microorganisms and provide them with a variety of survival benefits. Biofilms can pose medical and industrial challenges due to their increased tolerance of antimicrobials and disinfectants. Exposure of bacteria to subinhibitory concentrations of those compounds can further exacerbate the problem, as they provoke physiological changes that lead to increased biofilm production and potential therapeutic failure.

View Article and Find Full Text PDF

Mycoplasma hyopneumoniae is an economically devastating, globally disseminated pathogen that can maintain a chronic infectious state within its host, swine. Here, we depict the events underpinning M. hyopneumoniae biofilm formation on an abiotic surface and demonstrate for the first time, biofilms forming on porcine epithelial cell monolayers and in the lungs of pigs, experimentally infected with M.

View Article and Find Full Text PDF

, an agriculturally important porcine pathogen, disrupts the mucociliary escalator causing ciliostasis, loss of cilial function, and epithelial cell death within the porcine lung. Losses to swine production due to growth rate retardation and reduced feed conversion efficiency are severe, and antibiotics are used heavily to control mycoplasmal pneumonia. Notably, little is known about the repertoire of host receptors that targets to facilitate colonization.

View Article and Find Full Text PDF

Chronic wound infections are a major burden to both society and the health care industry. Bacterial biofilms are the major cause of chronic wound infections and are notoriously recalcitrant to treatments with antibiotics, making them difficult to eradicate. Thus, new approaches are required to combat biofilms in chronic wounds.

View Article and Find Full Text PDF

Anisotropic collective patterns occur frequently in the morphogenesis of two-dimensional biofilms. These patterns are often attributed to growth regulation mechanisms and differentiation based on gradients of diffusing nutrients and signaling molecules. Here, we employ a model of bacterial growth dynamics to show that even in the absence of growth regulation or differentiation, confinement by an enclosing medium such as agar can itself lead to stable pattern formation over time scales that are employed in experiments.

View Article and Find Full Text PDF

is an often-lethal bacterium causing human and animal disease. Crucial to the infectious cycle of is its ability to produce spores, which can germinate into toxin-producing vegetative bacteria under favorable conditions. However, structural details of the spore are lacking.

View Article and Find Full Text PDF

Object tracking is an instrumental tool supporting studies of cellular trafficking. There are three challenges in object tracking: the identification of targets; the precise determination of their position and boundaries; and the assembly of correct trajectories. This last challenge is particularly relevant when dealing with densely populated images with low signal-to-noise ratios-conditions that are often encountered in applications such as organelle tracking, virus particle tracking or single-molecule imaging.

View Article and Find Full Text PDF