Publications by authors named "Cynthia Smeraski"

West Nile virus (WNV) is a vector-borne pathogen that was first detected in the United States in 1999. The natural transmission cycle of WNV involves mosquito vectors and avian hosts, which vary in their competency to transmit the virus. American robins are an abundant backyard species in the United States and appear to have an important role in the amplification and dissemination of WNV.

View Article and Find Full Text PDF

In addition to functional disorders of paresis, paralysis, and cardiopulmonary complications, subsets of West Nile virus (WNV) patients may also experience neurocognitive deficits and memory disturbances. A previous hamster study has also demonstrated spatial memory impairment using the Morris water maze (MWM) paradigm. The discovery of an efficacious therapeutic antibody MGAWN1 from pre-clinical rodent studies raises the possibility of preventing or treating WNV-induced memory deficits.

View Article and Find Full Text PDF

Cliff swallows (Petrochelidon pyrrhonota) were inoculated with differing doses of West Nile virus (WNV) to evaluate their potential role as reservoir hosts in nature. Swallows often nest in large colonies in habitats and months associated with high mosquito abundance and early WNV transmission in North America. Additionally, cliff swallow diet consists of insects, including mosquitoes, leading to an additional potential route of WNV infection.

View Article and Find Full Text PDF

Populations of greater sage-grouse (Centrocercus urophasianus) have declined 45-80% in North America since 1950. Although much of this decline has been attributed to habitat loss, recent field studies have indicated that West Nile virus (WNV) has had a significant negative impact on local populations of grouse. We confirm the susceptibility of greater sage-grouse to WNV infection in laboratory experimental studies.

View Article and Find Full Text PDF

In this review we consider recovery of function after spinal cord injury, and, in particular, recovery improved following intraspinal cellular transplants. Some recovery occurs spontaneously and this can be especially dramatic in neonates, supporting the notion that developing and adult spinal cord respond differently to injury. Recovery can be improved in both neonates and adults by appropriate cellular transplants into the injury site.

View Article and Find Full Text PDF

Retinal input to the hypothalamic suprachiasmatic nucleus (SCN) synchronizes the SCN circadian oscillator to the external day/night cycle. Retinal ganglion cells that innervate the SCN via the retinohypothalamic tract are intrinsically light sensitive and express melanopsin. In this study, we provide data indicating that not all SCN-projecting retinal ganglion cells express melanopsin.

View Article and Find Full Text PDF

Intraocular injection of the Bartha strain of pseudorabies virus (PRV Bartha) results in transsynaptic infection of the hypothalamic suprachiasmatic nucleus (SCN), a retinorecipient circadian oscillator. PRV Bartha infection of a limited number of retinorecipient structures, including the SCN, was initially interpreted as the differential infection of a subpopulation of rat retinal ganglion cells, followed by replication and anterograde transport via the optic nerve. A recent report that used a recombinant strain of PRV Bartha (PRV152) expressing enhanced green fluorescent protein demonstrated that SCN infection actually results from retrograde transneuronal transport of the virus via the autonomic innervation of the eye in the golden hamster.

View Article and Find Full Text PDF

Melanopsin is a novel opsin synthesized in a small subset of retinal ganglion cells. Ganglion cells expressing melanopsin are capable of depolarizing in response to light in the absence of rod or cone input and are thus intrinsically light sensitive. Melanopsin ganglion cells convey information regarding general levels of environmental illumination to the suprachiasmatic nucleus, the intergeniculate leaflet, and the pretectum.

View Article and Find Full Text PDF

Intravitreal injection of the attenuated strain of pseudorabies virus (PRV Bartha) results in transneuronal spread of virus to a restricted set of central nuclei in the rat and mouse. We examined the pattern of central infection in the golden hamster after intravitreal inoculation with a recombinant strain of PRV Bartha constructed to express enhanced green fluorescent protein (PRV 152). Neurons in a subset of retinorecipient nuclei [i.

View Article and Find Full Text PDF