Publications by authors named "Cynthia S Wong"

The fabrication of patient-specific scaffolds for bone substitutes is possible through extrusion-based 3D printing of calcium phosphate cements (CPC) which allows the generation of structures with a high degree of customization and interconnected porosity. Given the brittleness of this clinically approved material, the stability of open-porous scaffolds cannot always be secured. Herein, a multi-technological approach allowed the simultaneous combination of CPC printing with melt electrowriting (MEW) of polycaprolactone (PCL) microfibers in an alternating, tunable design in one automated fabrication process.

View Article and Find Full Text PDF

To address the increasing demand for safe and effective treatment options for pelvic organ prolapse (POP) due to the worldwide ban of the traditional polypropylene meshes, this study introduced degradable polycaprolactone (PCL)/polyethylene glycol (PEG) composite meshes fabricated with melt-electrowriting (MEW). Two PCL/PEG mesh groups: 90:10 and 75:25 (PCL:PEG, wt%) were fabricated and characterized for their degradation rate and mechanical properties, with PCL meshes used as a control. The PCL/PEG composites showed controllable degradation rates by adjusting the PEG content and produced mechanical properties, such as maximal forces, that were higher than PCL alone.

View Article and Find Full Text PDF

Tissue engineering involves the seeding of cells into a structural scaffolding to regenerate the architecture of damaged or diseased tissue. To effectively design a scaffold, an understanding of how cells collectively sense and react to the geometry of their local environment is needed. Advances in the development of melt electro-writing have allowed micron and submicron polymeric fibres to be accurately printed into porous, complex and three-dimensional structures.

View Article and Find Full Text PDF

Assessing the role of lactogenic hormones in human mammary gland development is limited due to issues accessing tissue samples and so development of a human in vitro three-dimensional mammosphere model with functions similar to secretory alveoli in the mammary gland can aid to overcome this shortfall. In this study, a mammosphere model has been characterised using human mammary epithelial cells grown on either mouse extracellular matrix or agarose and showed insulin is essential for formation of mammospheres. Insulin was shown to up-regulate extracellular matrix genes.

View Article and Find Full Text PDF

Tissue growth in bioscaffolds is influenced significantly by pore geometry, but how this geometric dependence emerges from dynamic cellular processes such as cell proliferation and cell migration remains poorly understood. Here we investigate the influence of pore size on the time required to bridge pores in thin 3D-printed scaffolds. Experimentally, new tissue infills the pores continually from their perimeter under strong curvature control, which leads the tissue front to round off with time.

View Article and Find Full Text PDF

In this study, elastic styrene-butadiene-styrene (SBS), non-elastic SBS and their blends at different ratios were electrospun into fibrous membranes and their cell biocompatibility was evaluated. The as-spun fibers showed an average fiber diameter of 2 µm, and the fibrous membranes had pore size of 8 ± 0.01 µm.

View Article and Find Full Text PDF

Melt electrowriting (MEW) has grown in popularity in biofabrication research due to its ability to fabricate complex, high-precision networks of fibres. These fibres can mimic the morphology of a natural extracellular matrix, enabling tissue analogues for transplantation or personalised drug screening. To date, MEW has employed two different collector-plate modalities for the fabrication of constructs.

View Article and Find Full Text PDF

Background: Enterococcus hirae is rarely identified in humans and may be a commensal pathogen in psittacine birds. We present the fifth known case of E. hirae endocarditis.

View Article and Find Full Text PDF

Clinical hematopoietic stem/progenitor cell (HSPC) transplantation outcomes are strongly correlated with the number of cells infused. Hence, to generate sufficient HSPCs for transplantation, the best culture parameters for expansion are critical. It is generally assumed that the defined oxygen (O ) set for the incubator reflects the pericellular O to which cells are being exposed.

View Article and Find Full Text PDF

Electrically conductive scaffolds are of significant interest in tissue regeneration. However, the chemistry of the existing scaffolds usually lacks the bioactive features for effective interaction with cells. In this study, poly(ε-caprolactone) was electrospun into aligned nanofibers with 0.

View Article and Find Full Text PDF

In this study a largely available lignocellulose feedstock hemp (), obtained as an industrial waste, was used for cellulose extraction. The extraction of cellulose microfibres from hemp biomass was conducted by alkaline treatment and an acidification process. The extracted cellulose microfibres were characterised using Fourier-transformed infrared spectroscopy (FTIR), Scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and X-ray diffraction (XRD).

View Article and Find Full Text PDF

Elemental metals have been widely used to alloy metallic orthopedic implants. However, there is still insufficient research data elucidating the cell responses of osteoblastic cells to alloying elemental metals, which impedes the development of new metallic implant materials. In this study, the cellular responses of osteoblast-like cells (SaOS2) to 17 pure alloying elemental metals, that is, titanium (Ti), zirconium (Zr), hafnium (Hf), vanadium (V), niobium (Nb), tantalum (Ta), chromium (Cr), molybdenum (Mo), manganese (Mn), iron (Fe), ruthenium (Ru), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), silicon (Si), and tin (Sn) were comparatively investigated in vitro.

View Article and Find Full Text PDF

Oxygen levels are an important variable during the in vitro culture of stem cells. There has been increasing interest in the use of low oxygen to maximize proliferation and, in some cases, effect differentiation of stem cell populations. It is generally assumed that the defined pO in the incubator reflects the pO to which the stem cells are being exposed.

View Article and Find Full Text PDF

Vascular implants belong to a specialised class of medical textiles. The basic purpose of a vascular implant (graft and stent) is to act as an artificial conduit or substitute for a diseased artery. However, the long-term healing function depends on its ability to mimic the mechanical and biological behaviour of the artery.

View Article and Find Full Text PDF

Pathogenic bacteria often need to survive in the host and the environment, and it is not well understood how cells transition between these equally challenging situations. For the human and animal pathogen Salmonella enterica serovar Typhimurium, biofilm formation is correlated with persistence outside a host, but the connection to virulence is unknown. In this study, we analyzed multicellular-aggregate and planktonic-cell subpopulations that coexist when S.

View Article and Find Full Text PDF

Mismatch in mechanical properties between synthetic vascular graft and arteries contribute to graft failure. The viscoelastic properties of arteries are conferred by elastin and collagen. In this study, the mechanical properties and cellular interactions of aligned nanofibrous polyurethane (PU) scaffolds blended with elastin, collagen or a mixture of both proteins were examined.

View Article and Find Full Text PDF

Apatite was applied onto the fiber surface of an interbonded three-dimensional polycaprolactone fibrous scaffold through a vacuum nitrogen plasma pretreatment followed by immersion in a simulated body fluid. The plasma pretreatment improved the wettability and accelerated apatite deposition on the fiber surface. The apatite coating was proven to be biocompatible to fibroblast cells without any cytotoxicity.

View Article and Find Full Text PDF

Nylon is a relatively inert polymer. The ability to easily functionalize nylon with biomolecules will improve the utilization of nylon in biological systems. A potential use of the biofunctionalized nylon scaffolds is in devices for cell therapeutics that can specifically select cells present in small numbers, such as hematopoietic stem cells.

View Article and Find Full Text PDF

Novel biodegradable cross-linked co-polymers were prepared from poly(propylene glycol) diglycidylether (PPGDGE) and poly(ethylene imine) (PEI). PPGDGE and PEI were mixed at ambient temperature with varying PEI concentrations of 10, 15, 18.5, 25, 30, 40 and 50 wt%; the homogenous PPGDGE/PEI mixtures obtained were cured at elevated temperatures, resulting in formation of PPG-PEI cross-linked co-polymers via ring-opening reaction of PPGDGE with PEI.

View Article and Find Full Text PDF

Porous titanium (Ti) and titanium alloys are promising scaffold biomaterials for bone tissue engineering, because they have the potential to provide new bone tissue ingrowth abilities and low elastic modulus to match that of natural bone. In the present study, a new highly porous Ti6Ta4Sn alloy scaffold with the addition of biocompatible alloying elements (tantalum (Ta) and tin (Sn)) was prepared using a space-holder sintering method. The strength of the Ti6Ta4Sn scaffold with a porosity of 75% was found to be significantly higher than that of a pure Ti scaffold with the same porosity.

View Article and Find Full Text PDF

The construction of tissue-engineered parts such as heart valves and arteries requires more than just the seeding of cells onto a biocompatible/biodegradable polymeric scaffold. It is essential that the functionality and mechanical integrity of the cell-seeded scaffold be investigated in vitro prior to in vivo implantation. The correct hemodynamic conditioning would lead to the development of tissues with enhanced mechanical strength and cell viability.

View Article and Find Full Text PDF
Article Synopsis
  • A three-dimensional numerical model was developed to simulate fluid-structure interaction in an aortic trileaflet heart valve during its initial opening phase.
  • The study utilized an arbitrary Lagrangian-Eulerian method to link fluid dynamics with the structural behavior of the valve, examining various conditions like Reynolds numbers and time progression.
  • Findings showed that initial leaflet opening creates a circulation zone downstream of the leaflet tip, affecting both wall shear stress distribution and its intensity along the leaflet's vertical and horizontal sections.
View Article and Find Full Text PDF

Background: Polyethyleneterephthalate (PET) and polytetrafluoroethylene (PTFE) are polymers successfully used as large diameter arterial grafts for peripheral vascular surgery. However, these prosthetic grafts are rarely used for coronary bypass surgery because of their low patency rates. Endothelialisation of the lumenal surface of these materials may improve their patency.

View Article and Find Full Text PDF

Introduction: Although luminal delivery of butyrate is one putative mechanism by which biology of the colonic epithelium might be influenced by changes in luminal contents, there is a paucity of supportive cause-effect evidence. This study aimed to directly establish whether distal colonic butyrate delivery is able to alter the response of the distal colonic epithelium to a carcinogen.

Methods: Groups of male Sprague-Dawley rats with chronically intubated colons received infusions of 80 mM butyrate or 0.

View Article and Find Full Text PDF

Soluble fibres, such as guar gum, promote and wheat bran or methylcellulose protect from chemically induced colon carcinogenesis, relative to the effect of a fibre-free diet in rats. Mechanisms are poorly understood. Whereas all fibres are trophic to the colonic epithelium, the heterogeneity of effects on carcinogenesis may reflect different effects on the total number of crypts and, therefore, the size of the stem cell population.

View Article and Find Full Text PDF