Publications by authors named "Cynthia Pagba"

We describe six compounds as early hits for the development of direct inhibitors of KRAS, an important anticancer drug target. We show that these compounds bind to KRAS with affinities in the low micromolar range and exert different effects on its interactions with binding partners. Some of the compounds exhibit selective binding to the activated form of KRAS and inhibit signal transduction through both the MAPK or the phosphatidylinositide 3-kinase PI3K-protein kinase B (AKT) pathway in cells expressing mutant KRAS.

View Article and Find Full Text PDF

Mutations in KRAS account for about 20% of human cancers. Despite the major progress in recent years toward the development of KRAS inhibitors, including the discovery of covalent inhibitors of the G12C KRAS variant for the treatment of non-small-cell lung cancer, much work remains to be done to discover broad-acting inhibitors to treat many other KRAS-driven cancers. In a previous report, we showed that a 308.

View Article and Find Full Text PDF

We describe a small molecule ligand (2-hydroxy-5-{[(2-phenylcyclopropyl) carbonyl] amino} benzoic acid) as an initial lead for the development of direct inhibitors of KRAS, a notoriously difficult anticancer drug target. We show that the compound binds to KRAS near the switch regions with affinities in the low micromolar range and exerts different effects on KRAS interactions with binding partners. Specifically, impedes the interaction of KRAS with its effector Raf and reduces both intrinsic and SOS-mediated nucleotide exchange rates.

View Article and Find Full Text PDF

Histatin-5 (Hst-5) is an antimicrobial, salivary protein that is involved in the host defense system. Hst-5 has been proposed to bind functionally relevant zinc and copper but presents challenges in structural studies due to its disordered conformation in aqueous solution. Here, we used circular dichroism (CD) and UV resonance Raman (UVRR) spectroscopy to define metallo-Hst-5 interactions in aqueous solution.

View Article and Find Full Text PDF

Tyrosine residues act as intermediates in proton coupled electron transfer reactions (PCET) in proteins. For example, in ribonucleotide reductase (RNR), a tyrosyl radical oxidizes an active site cysteine via a 35 Å pathway that contains multiple aromatic groups. When singlet tyrosine is oxidized, the radical becomes a strong acid, and proton transfer reactions, which are coupled with the redox reaction, may be used to control reaction rate.

View Article and Find Full Text PDF

RAS mutations account for >15% of all human tumors, and of these ~85% are due to mutations in a particular RAS gene: KRAS. Recent studies revealed that KRAS harbors four druggable allosteric sites. Here, we have (a) used molecular simulations to generate ensembles of wild type and four major oncogenic KRAS mutants (G12V, G12D, G13D, and Q61H); (b) characterized the druggability of each allosteric pocket in each protein; (c) conducted extensive ensemble-based virtual screening using pocket-tailored ligand libraries; (d) prioritized hits through hierarchical postdocking analysis; and (e) validated predicted hits with NMR.

View Article and Find Full Text PDF

Tyrosine-tryptophan (YW) dyads are ubiquitous structural motifs in enzymes and play roles in proton-coupled electron transfer (PCET) and, possibly, protection from oxidative stress. Here, we describe the function of YW dyads in de novo designed 18-mer, β hairpins. In Peptide M, a YW dyad is formed between W14 and Y5.

View Article and Find Full Text PDF

Approximately 15% of all human tumors harbor mutant KRAS, a membrane-associated small GTPase and notorious oncogene. Mutations that render KRAS constitutively active will lead to uncontrolled cell growth and cancer. However, despite aggressive efforts in recent years, there are no drugs on the market that directly target KRAS and inhibit its aberrant functions.

View Article and Find Full Text PDF

Tyrosine-based radical transfer plays an important role in photosynthesis, respiration, and DNA synthesis. Radical transfer can occur either by electron transfer (ET) or proton coupled electron transfer (PCET), depending on the pH. Reversible conformational changes in the surrounding protein matrix may control reactivity of radical intermediates.

View Article and Find Full Text PDF

Photosystem II (PSII) and ribonucleotide reductase employ oxidation and reduction of the tyrosine aromatic ring in radical transport pathways. Tyrosine-based reactions involve either proton-coupled electron transfer (PCET) or electron transfer (ET) alone, depending on the pH and the pKa of tyrosine's phenolic oxygen. In PSII, a subset of the PCET reactions are mediated by a tyrosine-histidine redox-driven proton relay, YD-His189.

View Article and Find Full Text PDF

In class 1a ribonucleotide reductase (RNR), a substrate-based radical is generated in the α2 subunit by long-distance electron transfer involving an essential tyrosyl radical (Y122O·) in the β2 subunit. The conserved W48 β2 is ∼10 Å from Y122OH; mutations at W48 inactivate RNR. Here, we design a beta hairpin peptide, which contains such an interacting tyrosine-tryptophan dyad.

View Article and Find Full Text PDF

In photosynthesis, photosystem II (PSII) harvests sunlight with bound pigments to oxidize water and reduce quinone to quinol, which serves as electron and proton mediators for solar-to-chemical energy conversion. At least two types of quinone cofactors in PSII are redox-linked: QA, and QB. Here, we for the first time apply 257-nm ultraviolet resonance Raman (UVRR) spectroscopy to acquire the molecular vibrations of plastoquinone (PQ) in PSII membranes.

View Article and Find Full Text PDF

In proteins, proton-coupled electron transfer (PCET) can involve the transient oxidation and reduction of the aromatic amino acid tyrosine. Due to the short life time of tyrosyl radical intermediates, transient absorption spectroscopy provides an important tool in deciphering electron-transfer mechanisms. In this report, the photoionization of solution tyrosine and tyrosinate was investigated using transient, picosecond absorption spectroscopy.

View Article and Find Full Text PDF

Ribonucleotide reductase (RNR) catalyzes the production of deoxyribonucleotides in all cells. In E. coli class Ia RNR, a transient α2β2 complex forms when a ribonucleotide substrate, such as CDP, binds to the α2 subunit.

View Article and Find Full Text PDF

In photosystem II (PSII), water is oxidized at the oxygen-evolving complex. This process occurs through a light-induced cycle that produces oxygen and protons. While coupled proton and electron transfer reactions play an important role in PSII and other proteins, direct detection of internal proton transfer reactions is challenging.

View Article and Find Full Text PDF

Long-distance electron transfer (ET) plays a critical role in solar energy conversion, DNA synthesis, and mitochondrial respiration. Tyrosine (Y) side chains can function as intermediates in these reactions. The oxidized form of tyrosine deprotonates to form a neutral tyrosyl radical, Y(•), a powerful oxidant.

View Article and Find Full Text PDF

Proton coupled electron transfer (PCET) reactions are important in many biological processes. Tyrosine oxidation/reduction can play a critical role in facilitating these reactions. Two examples are photosystem II (PSII) and ribonucleotide reductase (RNR).

View Article and Find Full Text PDF

Metal substitution of heme proteins is widely applied in the study of biologically relevant electron transfer (ET) reactions. It has been shown that many modified proteins remain in their native conformation and can provide useful insights into the molecular mechanism of electron transfer between the native protein and its substrates. We investigated ET reactions between zinc-substituted cytochrome P450(cam) and small organic compounds such as quinones and ferrocene, which are capable of accessing the protein's hydrophobic channel and binding close to the active site, like its native substrate, camphor.

View Article and Find Full Text PDF

Raman spectroscopy is often plagued by a strong fluorescent background, particularly for biological samples. If a sample is excited with a train of ultrafast pulses, a system that can temporally separate spectrally overlapping signals on a picosecond timescale can isolate promptly arriving Raman scattered light from late-arriving fluorescence light. Here we discuss the construction and operation of a complex nonlinear optical system that uses all-optical switching in the form of a low-power optical Kerr gate to isolate Raman and fluorescence signals.

View Article and Find Full Text PDF

Quadruplex structures are higher order structures formed by guanine-rich oligonucleotides. In the present study, temperature-induced conformational changes in the quadruplex structures of aptamers and other guanine-rich oligonucleotides are probed by Raman spectroscopy. In particular, dramatic changes in the fingerprint region are observed in the spectra of thrombin binding aptamer at higher temperatures.

View Article and Find Full Text PDF

A water-soluble octacarboxyhemicarcerand was used as a shuttle to transport redox-active substrates across the aqueous medium and deliver them to the target protein. The results show that weak multivalent interactions and conformational flexibility can be exploited to reversibly bind complex supramolecular assemblies to biological molecules. Hydrophobic electron donors and acceptors were encapsulated within the hemicarcerand, and photoinduced electron transfer (ET) between the Zn-substituted cytochrome c (MW = 12.

View Article and Find Full Text PDF

In this study, we exploit the sensitivity offered by surface-enhanced Raman scattering (SERS) for the direct detection of thrombin using the thrombin-binding aptamer (TBA) as molecular receptor. The technique utilizes immobilized silver nanoparticles that are functionalized with thiolated thrombin-specific binding aptamer, a 15-mer (5'-GGTTGGTGTGGTTGG-3') quadruplex forming oligonucleotide. In addition to the Raman vibrational bands corresponding to the aptamer and blocking agent, new peaks (mainly at 1140, 1540, and 1635 cm(-1)) that are characteristic of the protein are observed upon binding of thrombin.

View Article and Find Full Text PDF

We describe an aptamer-based surface enhanced resonance Raman scattering (SERRS) sensor with high sensitivity, specificity, and stability for the detection of a coagulation protein, human alpha-thrombin. The sensor achieves high sensitivity and a limit of detection of 100 pM by monitoring the SERRS signal change upon the single-step of thrombin binding to immobilized thrombin binding aptamer. The selectivity of the sensor is demonstrated by the specific discrimination of thrombin from other protein analytes.

View Article and Find Full Text PDF
Article Synopsis
  • Pump-probe experiments indicate that electron injection at the dye-TiO2 interface occurs at extremely high rates (over 1 x 10(13) s(-1)), but there is still significant residual dye emission lasting into the long nanosecond range.
  • Time-correlated single photon counting microscopy reveals that dye-sensitized mesoporous TiO2 films have intense residual emissions with long decay times (up to 220 ns), mainly due to trapped physisorbed dye, which diffuses before being quenched.
  • In contrast, individual anatase nanoparticles that have undergone dialysis show much lower emission intensities and shorter lifetimes, suggesting that some dye molecules attached to surface defects do not inject electrons as rapidly as those
View Article and Find Full Text PDF

Novel ternary assemblies consisting of fully encapsulated host-guest complexes (hemicarceplexes) and wide band gap semiconductor nanoparticles were investigated. The water-soluble amphiphilic host (octacarboxyhemicarcerand) traps the hydrophobic chromophore within its cavity and binds to the surface of metal oxide nanoparticles. Fluorescence quenching and fast charge injection, kforward >/= 7 x 109 s-1, from the S2 state of encapsulated azulene were observed.

View Article and Find Full Text PDF