Phages are naturally occurring viruses that selectively kill bacterial species without disturbing the individual's normal flora, averting the collateral damage of antimicrobial usage. The safety and the effectiveness of phages have been mainly confirmed in the food industry as well as in animal models. In this study, we report on the successful isolation of phages specific to Vancomycin-resistant Enterococci, including (VRE) and from sewage samples, and demonstrate their efficacy and safety for VRE infection in the greater wax moth model.
View Article and Find Full Text PDFBackground: Vancomycin-resistant enterococci (VRE) are a major cause of morbidity and mortality in immunocompromised patients. Tracking the dissemination of VRE strains is crucial to understand the dynamics of emergence and spread of VRE in the hospital setting.
Methods: Whole genome sequencing (WGS) and phylogenetic analyses were performed to identify dominant VRE strains and potential transmission networks between 35 patients with VRE-positive rectal swabs and their rooms (main rooms and bathrooms) on the leukemia (LKM) and the hematopoietic cell transplant (HCT) floors.
Bacteriophages (phages) may constitute a natural, safe, and effective strategy to prevent and control multidrug-resistant organisms (MDROs), and ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogens in particular. Few clinical studies have assessed the safety and efficacy of phages in patients infected with MDROs. This systematic review summarizes and critically evaluates published studies of phages in clinical practice and presents the appropriate phage selection criteria, as well as recommendations for clinicians and scientists for a successful therapy.
View Article and Find Full Text PDF