Publications by authors named "Cynthia Ni"

The use of waste streams and other renewable feedstocks in microbial biosynthesis has long been a goal for metabolic engineers. Microbes can utilize the substrate mixtures found in waste streams, though they are more technically challenging to convert to useful products compared to the single substrates of standard practice. It is difficult to achieve consistent biosynthesis in the face of the temporally changing nature of waste streams.

View Article and Find Full Text PDF

Microbes can facilitate production of valuable chemicals more sustainably than traditional chemical processes in many cases: they utilize renewable feedstocks, require less energy intensive process conditions, and perform a variety of chemical reactions using endogenous or heterologous enzymes. In response to the metabolic burden imposed by production pathways, chemical inducers are frequently used to initiate gene expression after the cells have reached sufficient density. While chemically inducible promoters are a common research tool used for pathway expression, they introduce a compound extrinsic to the process along with the associated costs.

View Article and Find Full Text PDF
Article Synopsis
  • Metabolic engineering involves modifying cells to produce valuable compounds by altering or introducing genes for specific enzymatic reactions.
  • Dynamic regulation of metabolic processes helps manage the competing demands on cells caused by these engineered pathways.
  • The review discusses strategies for dynamic regulation, including how responsive control circuits are designed to optimize shifts in metabolic activity based on specific challenges.
View Article and Find Full Text PDF

We demonstrate that when using cell-laden core-shell hydrogel beads to support the generation of tumor spheroids, the shell structure reduces the out-of-bead and monolayer cell proliferation that occurs during long-term culture of tumor cells within core-only alginate beads. We fabricate core-shell beads in a two-step process using simple, one-layer microfluidic devices. Tumor cells encapsulated within the bead core will proliferate to form multicellular aggregates which can serve as three-dimensional (3-D) models of tumors in drug screening.

View Article and Find Full Text PDF