Publications by authors named "Cynthia Martinez-Cisneros"

The successful integration of sample pretreatment stages, sensors, actuators and electronics in microfluidic devices enables the attainment of complete micro total analysis systems, also known as lab-on-a-chip devices. In this work, we present a novel monolithic autonomous microanalyzer that integrates microfluidics, electronics, a highly sensitive photometric detection system and a sample pretreatment stage consisting on an embedded microcolumn, all in the same device, for on-line determination of relevant environmental parameters. The microcolumn can be filled/emptied with any resin or powder substrate whenever required, paving the way for its application to several analytical processes: separation, pre-concentration or ionic-exchange.

View Article and Find Full Text PDF

Sample pre-concentration is crucial to achieve high sensitivity and low detection limits in lab-on-a-chip devices. Here, we present a system in which self-propelled catalytic micromotors are biofunctionalized and trapped acting as an alternative concentrating mechanism. This system requires no external energy source, which facilitates integration and miniaturization.

View Article and Find Full Text PDF

We present ultracompact three-dimensional tubular structures integrating Au-based electrodes as impedimetric microsensors for the in-flow determination of mono- and divalent ionic species and HeLa cells. The microsensors show an improved performance of 2 orders of magnitude (limit of detection = 0.1 nM for KCl) compared to conventional planar conductivity detection systems integrated in microfluidic platforms and the capability to detect single HeLa cells in flowing phosphate buffered saline.

View Article and Find Full Text PDF

We demonstrate that catalytic micromotors can be trapped in microfluidic chips containing chevron and heart-shaped structures. Despite the challenge presented by the reduced size of the traps, microfluidic chips with different trapping geometries can be fabricated via replica moulding. We prove that these microfluidic chips can capture micromotors without the need for any external mechanism to control their motion.

View Article and Find Full Text PDF

We demonstrate that catalytic microjet engines can out-swim high complex media composed of red blood cells and serum. Despite the challenge presented by the high viscosity of the solution at room temperature, the catalytic microjets can be activated at physiological temperature and, consequently, self-propel in diluted solutions of blood samples. We prove that these microjets self-propel in 10× diluted blood samples using microfluidic chips.

View Article and Find Full Text PDF

The recent needs in the nanosciences field have promoted the interest towards the development of miniaturized and highly integrated devices able to improve and automate the current processes associated with efficient nanomaterials production. Herein, a green tape based microfluidic system to perform high temperature controlled synthetic reactions of nanocrystals is presented. The device, which integrates both the microfluidics and a thermally controlled platform, was applied to the automated and continuous synthesis of CdSe quantum dots.

View Article and Find Full Text PDF

Nowadays, the attainment of microsystems that integrate most of the stages involved in an analytical process has raised an enormous interest in several research fields. This approach provides experimental set-ups of increased robustness and reliability, which simplify their application to in-line and continuous biomedical and environmental monitoring. In this work, a novel, compact and autonomous microanalyzer aimed at multiwavelength colorimetric determinations is presented.

View Article and Find Full Text PDF

The development of micro total analysis systems (muTAS) has become a growing research field. Devices that include not only the fluidics and the detection system but also the associated electronics are reported scarcely in the literature because of the complexity and the cost involved for their monolithic integration. Frequently, dedicated devices aimed at solving specific analytical problems are needed.

View Article and Find Full Text PDF

The integration of optical detection methods in continuous flow microsystems can highly extend their range of application, as long as some negative effects derived from their scaling down can be minimized. Downsizing affects to a greater extent the sensitivity of systems based on absorbance measurements than the sensitivity of those based on emission ones. However, a careful design of the instrumental setup is needed to maintain the analytical features in both cases.

View Article and Find Full Text PDF

The advantages of microanalyzers, usually fabricated in silicon, glass, or polymers, are well-known. The design and construction of fluidic platforms are well-developed areas due to the perfectly established microfabrication technologies used. However, there is still the need to achieve devices that include not only the fluid management system but also the measurement electronics, so that real portable miniaturized analyzers can be obtained.

View Article and Find Full Text PDF