Publications by authors named "Cynthia M Haggerty"

Transcription is a multi-stage process that coordinates several steps within the transcription cycle including chromatin reorganization, RNA polymerase II recruitment, initiation, promoter clearance and elongation. Recent advances have identified the super elongation complex, containing the eleven-nineteen lysine-rich leukaemia (ELL) protein, as a key regulator of transcriptional elongation. Here we show that ELL has a diverse and kinetically distinct role before its assembly into the super elongation complex by stabilizing Pol II recruitment/initiation and entry into the pause site.

View Article and Find Full Text PDF

The BRCA1 gene product plays numerous roles in regulating genome integrity. Its role in assembling supermolecular complexes in response to DNA damage has been extensively studied; however, much less is understood about its role as a transcriptional coregulator. Loss or mutation is associated with hereditary breast and ovarian cancers, whereas altered expression occurs frequently in sporadic forms of breast cancer, suggesting that the control of BRCA1 transcription might be important to tumorigenesis.

View Article and Find Full Text PDF

Profiling the dynamic interaction of p300 with proximal promoters of human T cells identified a class of genes that rapidly coassemble p300 and RNA polymerase II (pol II) following mitogen stimulation. Several of these p300 targets are immediate early genes, including FOS, implicating a prominent role for p300 in the control of primary genetic responses. The recruitment of p300 and pol II rapidly transitions to the assembly of several elongation factors, including the positive transcriptional elongation factor (P-TEFb), the bromodomain-containing protein (BRD4), and the elongin-like eleven nineteen lysine-rich leukemia protein (ELL).

View Article and Find Full Text PDF

2-(2,4-Difluoro-phenyl)-4,5,6,7-tetrafluoro-1H-isoindole-1,3(2H)-dione (CPS49) is a member of a recently identified class of redox-reactive thalidomide analogs that show selective killing of leukemic cells by increasing intracellular reactive oxygen species (ROS) and targeting multiple transcriptional pathways. Flavopiridol is a semisynthetic flavonoid that inhibits cyclin-dependent kinases and also shows selective lethality against leukemic cells. The purpose of this study is to explore the efficacy and mechanism of action of the combinatorial use of the redox-reactive thalidomide CPS49 and the cyclin-dependent kinase inhibitor flavopiridol as a selective antileukemic therapeutic strategy.

View Article and Find Full Text PDF

Global genomic approaches in cancer research have provided new and innovative strategies for the identification of signatures that differentiate various types of human cancers. Computational analysis of the promoter composition of the genes within these signatures may provide a powerful method for deducing the regulatory transcriptional networks that mediate their collective function. In this study we have systematically analyzed the promoter composition of gene classes derived from previously established genetic signatures that recently have been shown to reliably and reproducibly distinguish five molecular subtypes of breast cancer associated with distinct clinical outcomes.

View Article and Find Full Text PDF

Multiple variants of the vascular adhesion molecule-1 (VCAM1) promoter show increased nucleotide heterozygosity in the African American population. Using a novel transfection-based transcriptional pathway profiling method, we show that select uncommon variants are functionally hyperactive. Eight candidate VCAM1 promoter haplotypes comprising 13 previously identified SNPs were assessed for response to known mitogens.

View Article and Find Full Text PDF

Using a novel cell-based assay to profile transcriptional pathway targeting, we have identified a new functional class of thalidomide analogs with distinct and selective antileukemic activity. These agents activate nuclear factor of activated T cells (NFAT) transcriptional pathways while simultaneously repressing nuclear factor-kappaB (NF-kappaB) via a rapid intracellular amplification of reactive oxygen species (ROS). The elevated ROS is associated with increased intracellular free calcium, rapid dissipation of the mitochondrial membrane potential, disrupted mitochondrial structure, and caspase-independent cell death.

View Article and Find Full Text PDF

Background: The purpose of this study is to determine whether or not there exists nonrandom grouping of cis-regulatory elements within gene promoters that can be perceived independent of gene expression data and whether or not there is any correlation between this grouping and the biological function of the gene.

Results: Using ProSpector, a web-based promoter search and annotation tool, we have applied an unbiased approach to analyze the transcription factor binding site frequencies of 1400 base pair genomic segments positioned at 1200 base pairs upstream and 200 base pairs downstream of the transcriptional start site of 7298 commonly studied human genes. Partitional clustering of the transcription factor binding site composition within these promoter segments reveals a small number of gene groups that are selectively enriched for gene ontology terms consistent with distinct aspects of cellular function.

View Article and Find Full Text PDF

High throughput technologies are standard methods for analysis of the proteome. Multi-layer multi-well plate dot-blotting system (MLDot) technology is a high-throughput dot blotting system that provides a simple, cost-effective approach for protein expression profiling in multiple samples. In contrast to traditional dot blot, MLDot uses a layered stack of thin, sieve-like membranes in place of a single nitrocellulose membrane.

View Article and Find Full Text PDF

Understanding the language encrypted in the gene regulatory regions of the human genome is a challenging goal for the genomic era. Although customary extrapolations from steady-state mRNA levels have been effective, deciphering these regulatory codes will require additional empirical data sets that more closely reflect the dynamic progression of molecular events responsible for inducible transcription. We describe an approach using chromatin immunoprecipitation to profile the kinetic occupancy of the transcriptional coactivator and histone acetyltransferase p300 at numerous mitogen-induced genes in activated T cells.

View Article and Find Full Text PDF

The molecular profiles of protein expression from hundreds of cell lysates can be determined in a high-throughput manner by using fluorescent bead technologies, enzyme-linked immunosorbent assays (ELISAs), and protein microarrays. Although powerful, these tools are costly and technically challenging and thus have limited accessibility for many research groups. We propose a modification of traditional dot blotting that increases throughput of this approach and provides a simple and cost-effective technique for profiling multiple samples.

View Article and Find Full Text PDF

The proximal promoter sequence of the interleukin-2 (IL-2) gene contains a series of composite sites or modules that controls much of its responsiveness to environmental stimuli. The integrated targeting of these modules is therefore a major mode of regulation. This report describes how multiple functional hierarchies, required for the recruitment of the p300 co-activator to the CD28RE/AP1 (TRE) module of the IL-2 promoter, are selectively disrupted in human T-cells by the immunosuppressive and anti-inflammatory actions of the p38 mitogen-activated protein kinase inhibitor (MAPK), SB203580.

View Article and Find Full Text PDF

In this study, we demonstrate that p53 directly inhibits expression of the T cell growth factor (IL-2) in activated T cells. This repression is independent of the intrinsic transcriptional activity of p53 and is mediated by the Tax-responsive CD28RE-3'-12-O-tetradecanoylphorbol-13-acetate response element (AP1) element of the IL-2 promoter. Coexpression of the Tax oncogene causes full reversal of this repression through coordinate targeting of p300, CREB, and the NF-kappaB pathways.

View Article and Find Full Text PDF

Although extensive homology exists between related genes p53 and p73, recent data suggest that the family members have divergent roles. We demonstrate that the differential regulatory roles of p53 family member p73 are highly cell-context and promoter-specific. Full-length p73 expressed in the transformed leukemia cell line Jurkat behaves as a specific dominant negative transcriptional repressor of the cell cycle inhibitor gene p21 and blocks p53-mediated apoptosis.

View Article and Find Full Text PDF