Publications by authors named "Cynthia M Friend"

Single-atom catalysts have received significant attention for their ability to enable highly selective reactions. However, many reactions require more than one adjacent site to align reactants or break specific bonds. For example, breaking a C-O or O-H bond may be facilitated by a dual site containing an oxophilic element and a carbophilic or "hydrogenphilic" element that binds each molecular fragment.

View Article and Find Full Text PDF

The dissociation of H is an essential elementary step in many industrial chemical transformations, typically requiring precious metals. Here, we report a hierarchical nanoporous Cu catalyst doped with small amounts of Ti (npTiCu) that increases the rate of H-D exchange by approximately one order of magnitude compared to the undoped nanoporous Cu (npCu) catalyst. The promotional effect of Ti was measured via steady-state H-D exchange reaction experiments under atmospheric pressure flow conditions in the temperature range of 300-573 K.

View Article and Find Full Text PDF

Optimizing the use of expensive precious metals is critical to developing sustainable and low-cost processes for heterogeneous catalysis or electrochemistry. Here, we report a synthesis method that yields core-shell Cu-Ru, Cu-Rh, and Cu-Ir nanoparticles with the platinum-group metals segregated on the surface. The synthesis of Cu-Ru, Cu-Rh, and Cu-Ir particles allows maximization of the surface area of these metals and improves catalytic performance.

View Article and Find Full Text PDF

The development of new catalyst materials for energy-efficient chemical synthesis is critical as over 80% of industrial processes rely on catalysts, with many of the most energy-intensive processes specifically using heterogeneous catalysis. Catalytic performance is a complex interplay of phenomena involving temperature, pressure, gas composition, surface composition, and structure over multiple length and time scales. In response to this complexity, the integrated approach to heterogeneous dilute alloy catalysis reviewed here brings together materials synthesis, mechanistic surface chemistry, reaction kinetics, in situ and operando characterization, and theoretical calculations in a coordinated effort to develop design principles to predict and improve catalytic selectivity.

View Article and Find Full Text PDF

With the emergence of methods for computing rate constants for elementary reaction steps of catalytic reactions, benchmarking their accuracy becomes important. The unimolecular dehydrogenation of adsorbed formate on metal surfaces serves as a prototype for comparing experiment and theory. Previously measured pre-exponential factors for CO formation from formate on metal surfaces, including Cu(110), are substantially higher than expected from the often used value of /, or ∼6 × 10 s, suggesting that the entropy of the transition state is higher than that of the adsorbed formate.

View Article and Find Full Text PDF

The surface morphology and composition of a catalyst during excursions between oxidizing and reducing conditions can change substantially, especially in bimetallic alloys. Both thermodynamic and kinetic factors play a role in determining the properties of alloy surfaces where the active phase may be a metastable state. Previously, Ag oxide reduction was shown to be dramatically enhanced when Pd is on the surface; however, Pd is more stable when dissolved in Ag, raising the question as to whether a highly active Pd surface state will persist over multiple reaction cycles, a requirement for catalytic function.

View Article and Find Full Text PDF

Selective hydrogenation of α,β-unsaturated aldehydes to unsaturated alcohols is a challenging class of reactions, yielding valuable intermediates for the production of pharmaceuticals, perfumes, and flavorings. On monometallic heterogeneous catalysts, the formation of the unsaturated alcohols is thermodynamically disfavored over the saturated aldehydes. Hence, new catalysts are required to achieve the desired selectivity.

View Article and Find Full Text PDF

The migration of species across interfaces can crucially affect the performance of heterogeneous catalysts. A key concept in using bimetallic catalysts for hydrogenation is that the active metal supplies hydrogen atoms to the host metal, where selective hydrogenation can then occur. Herein, we demonstrate that, following dihydrogen dissociation on palladium islands, hydrogen atoms migrate from palladium to silver, to which they are generally less strongly bound.

View Article and Find Full Text PDF

The restructuring of interfaces plays a crucial role in materials science and heterogeneous catalysis. Bimetallic systems, in particular, often adopt very different compositions and morphologies at surfaces compared to the bulk. For the first time, we reveal a detailed atomistic picture of long-time scale restructuring of Pd deposited on Ag using microscopy, spectroscopy, and novel simulation methods.

View Article and Find Full Text PDF

Selective photocatalytic transformations of chemicals derived from biomass, such as isobutanol, have been long envisioned for a sustainable chemical production. A strong temperature dependence in the reaction selectivity is found for isobutanol photo-oxidation on rutile TiO(110). The strong temperature dependence is attributed to competition between thermal desorption of the primary photoproduct and secondary photochemical steps.

View Article and Find Full Text PDF

X-ray absorption spectroscopy is a common method for probing the local structure of nanocatalysts. One portion of the X-ray absorption spectrum, the X-ray absorption near edge structure (XANES) is a useful alternative to the commonly used extended X-ray absorption fine structure (EXAFS) for probing three-dimensional geometry around each type of atomic species, especially in those cases when the EXAFS data quality is limited by harsh reaction conditions and low metal loading. A methodology for quantitative determination of bimetallic architectures from their XANES spectra is currently lacking.

View Article and Find Full Text PDF

The potential for tuning the electronic structure of materials to control reactivity and selectivity in heterogenous catalysis has driven interest in ultrathin metal films which may differ from their bulk form. Herein, a 1-atomic layer Ag film on Pd(111) (Ag/Pd(111)) is demonstrated to have dramatically different reactivity towards formic acid compared to bulk Ag. Formic acid decomposition is of interest as a source of H for fuel cell applications and modification of Pd by Ag reduces poisoning by CO and increases the selectivity for H formation.

View Article and Find Full Text PDF

Heterogeneous catalysts are complex materials with multiple interfaces. A critical proposition in exploiting bifunctionality in alloy catalysts is to achieve surface migration across interfaces separating functionally dissimilar regions. Herein, we demonstrate the enhancement of more than 10 in the rate of molecular hydrogen reduction of a silver surface oxide in the presence of palladium oxide compared to pure silver oxide resulting from the transfer of atomic hydrogen from palladium oxide islands onto the surrounding surface formed from oxidation of a palladium-silver alloy.

View Article and Find Full Text PDF

Dilute alloys are promising materials for sustainable chemical production; however, their composition and structure affect their performance. Herein, a comprehensive study of the effects of pretreatment conditions on the materials properties of PdAu nanoparticles partially embedded in porous silica is related to the activity for catalytic hydrogenation of 1-hexyne to 1-hexene. A combination of in situ characterization and theoretical calculations provide evidence that changes in palladium surface content are induced by treatment in oxygen, hydrogen and carbon monoxide at various temperatures.

View Article and Find Full Text PDF

Controlling the selectivity of catalytic reactions is a critical aspect of improving energy efficiency in the chemical industry; thus, predictive models are of key importance. Herein the performance of a heterogeneous, nanoporous Au catalyst is predicted for the complex catalytic self-coupling of the series of C -C alkyl alcohols, based solely on the known kinetics of the elementary steps of the catalytic cycle for methanol coupling, using scaling methods augmented by density functional theory. Notably, a sharp decrease in selectivity for ester formation with increasing molecular weight to favor the aldehyde due to van der Waals interactions of reaction intermediates with the surface was predicted and subsequently verified quantitatively by experiment.

View Article and Find Full Text PDF

We investigated the growth and auto-oxidation of Pd deposited onto a AgOx single-layer on Ag(111) using scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS). Palladium initially grows as well-dispersed, single-layer clusters that adopt the same triangular shape and orientation of Agn units in the underlying AgOx layer. Bi-layer clusters preferentially form upon increasing the Pd coverage to ∼0.

View Article and Find Full Text PDF

Despite a wide application in heterogeneous catalysis, the surface termination of FeO(111) remains controversial. Herein, a surface with both Lewis acid and base sites is created through formation of an FeO(111) film on α-FeO(0001). The dual functionality is generated from a locally nonuniform surface layer of O adatoms and Fe sites.

View Article and Find Full Text PDF

Properties of mono- and bimetallic metal nanoparticles (NPs) may depend strongly on their compositional, structural (or geometrical) attributes, and their atomic dynamics, all of which can be efficiently described by a partial radial distribution function (PRDF) of metal atoms. For NPs that are several nanometers in size, finite size effects may play a role in determining crystalline order, interatomic distances, and particle shape. Bimetallic NPs may also have different compositional distributions than bulk materials.

View Article and Find Full Text PDF

Monolithic nanoporous metals, derived from dealloying, have a unique bicontinuous solid/void structure that provides both large surface area and high electrical conductivity, making them ideal candidates for various energy applications. However, many of these applications would greatly benefit from the integration of an engineered hierarchical macroporous network structure that increases and directs mass transport. We report on 3D (three-dimensional)-printed hierarchical nanoporous gold (3DP-hnp-Au) with engineered nonrandom macroarchitectures by combining 3D printing and dealloying.

View Article and Find Full Text PDF

The nonuniform reactivity of adsorbed oxygen during the selective oxidation of methanol on Au(110)-(1×2) was demonstrated using in situ scanning tunneling microscopy (STM), establishing the importance of both atomic and mesoscale structure in determining reaction kinetics. At coverages above 0.06 ML, oxygen consumption occurs preferentially along [11̅0] direction, creating local regions completely devoid of oxygen between oxygen islands.

View Article and Find Full Text PDF

An overview of the Faraday Discussion, "Designing Nanoparticle Systems for Catalysis", is presented. Examples are taken from the papers presented at the meeting and from the literature to illustrate the main discussion points.

View Article and Find Full Text PDF

The relative stability of carboxylates on Au(110) was investigated as part of a comprehensive study of adsorbate binding on Group IB metals that can be used to predict and understand how to control reactivity in heterogeneous catalysis. The binding efficacy of carboxylates is only weakly dependent on alkyl chain length for relatively short-chain molecules, as demonstrated using quantitative temperature-programmed reaction spectroscopy. Corresponding density functional theory (DFT) calculations demonstrated that the bidentate anchoring geometry is rigid and restricts the amount of additional stabilization through adsorbate-surface van der Waals (vdW) interactions which control stability for alkoxides.

View Article and Find Full Text PDF

The water-oxygen-gold interface is important in many surface processes and has potential influence on heterogeneous catalysis. Herein, it is shown that water facilitates the migration of atomic oxygen on Au(110), demonstrating the dynamic nature of surface adsorption. We demonstrate this effect for the first time, using in situ scanning tunnelling microscopy (STM), temperature-programmed reaction spectroscopy (TPRS) and first-principles theoretical calculations.

View Article and Find Full Text PDF

The activation of O on metal surfaces is a critical process for heterogeneous catalysis and materials oxidation. Fundamental studies of well-defined metal surfaces using a variety of techniques have given crucial insight into the mechanisms, energetics, and dynamics of O adsorption and dissociation. Here, trends in the activation of O on transition metal surfaces are discussed, and various O adsorption states are described in terms of both electronic structure and geometry.

View Article and Find Full Text PDF