The reconstitution of biosynthetic pathways from heterologous hosts can help define the minimal genetic requirements for pathway function and facilitate detailed mechanistic studies. Each of the three pathways for the assembly of cytochrome c in nature (called systems I, II, and III) has been shown to function recombinantly in Escherichia coli, covalently attaching heme to the cysteine residues of a CXXCH motif of a c-type cytochrome. However, recombinant systems I (CcmABCDEFGH) and II (CcsBA) function in the E.
View Article and Find Full Text PDFA pathway for cytochrome c maturation (Ccm) in bacteria, archaea and eukaryotes (mitochondria) requires the genes encoding eight membrane proteins (CcmABCDEFGH). The CcmABCDE proteins are proposed to traffic haem to the cytochrome c synthetase (CcmF/H) for covalent attachment to cytochrome c by unknown mechanisms. For the first time, we purify pathway complexes with trapped haem to elucidate the molecular mechanisms of haem binding, trafficking and redox control.
View Article and Find Full Text PDFThe system I cytochrome c biogenesis pathway requires CcmD, a small polypeptide of 69 residues in Escherichia coli. Here it is shown that CcmD is a component of the CcmABC ATP-binding cassette transporter complex. CcmD is not necessary for the CcmC-dependent transfer of heme to CcmE in the periplasm or for interaction of CcmE with CcmABC.
View Article and Find Full Text PDFStudies have indicated that specific heme delivery to apocytochrome c is a critical feature of the cytochrome c biogenesis pathways called system I and II. To determine directly the heme requirements of each system, including whether other metal porphyrins can be incorporated into cytochromes c, we engineered Escherichia coli so that the natural system I (ccmABCDEFGH) was deleted and exogenous porphyrins were the sole source of porphyrins (Delta hemA). The engineered E.
View Article and Find Full Text PDFAlthough organisms from all kingdoms have either the system I or II cytochrome c biogenesis pathway, it has remained a mystery as to why these two distinct pathways have developed. We have previously shown evidence that the system I pathway has a higher affinity for haem than system II for cytochrome c biogenesis. Here, we show the mechanism by which the system I pathway can utilize haem at low levels.
View Article and Find Full Text PDFGenetic analysis has indicated that the system II pathway for c-type cytochrome biogenesis in Bordetella pertussis requires at least four biogenesis proteins (CcsB, CcsA, DsbD and CcsX). In this study, the eight genes (ccmA-H) associated with the system I pathway in Escherichia coli were deleted. Using B.
View Article and Find Full Text PDF