The environmental and health risks of n-alkanes and benzene, toluene, ethylbenzene, and xylene (BTEX) in Eze-Iyi River at Isuikwuato oil spill site were evaluated. The water samples (60) were collected from upstream and downstream during the dry and rainy seasons. Concentrations of n-alkanes and BTEX were determined using a gas chromatograph coupled with a flame ionization detector.
View Article and Find Full Text PDFJ Environ Sci Health A Tox Hazard Subst Environ Eng
January 2023
The sorption of crude oil using raw (unmodified) and MnO nanoparticle-modified glycine max husks was investigated for treatment of oil-spilled water surfaces by batch sorption technique. Box-Behnken design was employed for optimization of the sorption process by response surface methodology using design expert software. The sorbents' characterization was by Fourier-transform infrared spectroscopy, scanning electron microscope-energy dispersive X-ray spectroscopy, Brunauer-Emmett-Teller surface area analysis, X-ray diffraction analysis, and Thermogravimetric analysis.
View Article and Find Full Text PDFThe study determined the following heavy metals: cadmium (Cd), chromium (Cr), copper (Cu), manganese (Mn), lead (Pb) and zinc (Zn) concentrations in surface water and in fish pond (water, sediments and farmed fish (Clarias gariepinus)) from a fish farm cluster with the view of assessing its pollution level and associated human health exposure risk to these heavy metals through fish consumption. Samples were digested with aqua regia and metal concentrations were determined with an atomic absorption spectrophotometer equipped with an air acetylene flame. Mean concentrations of the heavy metals (ppm) in surface and pond water ranged as follows: cadmium (below detection limit (bdl): 0.
View Article and Find Full Text PDFIn this study, an investigation was carried out to explore the the impact of white-rot fungi (WRF) on enhancing the development of phenanthrene catabolism in soil over time (1, 25, 50, 75 and 100 d). The WRF were immobilised on spent brewery grains (SBG) prior to inoculation to the soil. The results showed that SBG-immobilised WRF-amended soils reduced the lag phases and increased the extents of C-phenanthrene mineralisation.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
February 2021
The health risks of polybrominated diphenyl ethers (PBDEs) to toddlers, children, and adults in creches, nursery schools, cars, and offices in Nsukka, Nigeria, via inhalation, ingestion, and dermal exposure pathways were evaluated. Eight PBDEs congeners (BDE-28, BDE-47, BDE-100, BDE-99, BDE-154, BDE-153, BDE-183, and BDE-209) were determined using gas chromatography-mass spectrometry. This is the first study on PBDEs in creches and nursery schools in Africa.
View Article and Find Full Text PDFEcotoxicol Environ Saf
June 2020
The impact of whole digestate (WD) and its fractions (solid [SD] and liquid [LD]) on C-phenanthrene mineralization in soil over 90 d contact time was investigated. The C-phenanthrene spiked soil was aged for 1, 30, 60 and 90 d. Analysis of water-soluble nitrogen, phosphorus, total (organic and inorganic) carbon, and quantitative bacterial count were conducted at each time point to assess their impact on mineralization of C-phenanthrene in soils.
View Article and Find Full Text PDFEvaluation of the human exposure risk to semivolatile organic compound (SVOC) levels in soil from automobile workshops in Awka was investigated. Soil samples were collected in both dry and rainy seasons. Solvent extraction of the soil samples was carried out using n-hexane: acetone mixture (1:1).
View Article and Find Full Text PDFBiochar, like most other adsorbents, is a carbonaceous material, which is formed from the combustion of plant materials, in low-zero oxygen conditions and results in a material, which has the capacity to sorb chemicals onto its surfaces. Currently, research is being carried out to investigate the relevance of biochar in improving the soil ecosystem, digestate quality and most recently the anaerobic digestion process. Anaerobic digestion (AD) of organic substrates provides both a sustainable source of energy and a digestate with the potential to enhance plant growth and soil health.
View Article and Find Full Text PDF