Introduction: Both artificial intelligence (AI) and distal attachment devices have been shown to improve adenoma detection rate and reduce miss rate during colonoscopy. We studied the combined effect of Endocuff and AI on enhancing detection rates of various colonic lesions.
Methods: This was a 3-arm prospective randomized colonoscopy study involving patients aged 40 years or older.
Background And Aims: Blue-light imaging (BLI) is a new image-enhanced endoscopy with a wavelength filter similar to narrow-band imaging (NBI). We compared the 2 with white-light imaging (WLI) on proximal colonic lesion detection and miss rates.
Methods: In this 3-arm prospective randomized study with tandem examination of the proximal colon, we enrolled patients aged ≥40 years.
Background And Aims: Computer-assisted detection (CADe) is a promising technologic advance that enhances adenoma detection during colonoscopy. However, the role of CADe in reducing missed colonic lesions is uncertain. The aim of this study was to determine the miss rates of proximal colonic lesions by CADe and conventional colonoscopy.
View Article and Find Full Text PDF