Species conservation and management benefit from precise understanding of natural patterns of dispersal and genetic variation. Using recent advances in indirect genetic methods applied to both adult plants and dispersed seeds, we find that the mean seed dispersal in a threatened marine foundation plant (the eelgrass Zostera marina) is approximately 100-200 m. This distance is surprisingly more similar to that of wind-dispersed terrestrial seeds (~10s to 100s of meters) than the passive dispersal of marine propagules via currents (~10s to 100s of kilometres).
View Article and Find Full Text PDFMany species face extinction risks owing to climate change, and there is an urgent need to identify which species' populations will be most vulnerable. Plasticity in heat tolerance, which includes acclimation or hardening, occurs when prior exposure to a warmer temperature changes an organism's upper thermal limit. The capacity for thermal acclimation could provide protection against warming, but prior work has found few generalizable patterns to explain variation in this trait.
View Article and Find Full Text PDFGlobal declines in coastal foundation species highlight the importance of effective restoration. In this study, we examined the effects of source population identity and diversity (one vs. three sources per plot) on seagrass () transplant success.
View Article and Find Full Text PDFGenetic diversity can influence ecological processes throughout ontogeny, yet whether diversity at early life history stages is important in long-lived taxa with overlapping generations is unclear. Seagrass systems provide some of the best evidence for the ecological effects of genetic diversity among adult shoots, but we do not know if the genetic diversity of seeds and seedlings also influences seagrass ecology. We tested the effects of seagrass (Zostera marina) seed diversity and relatedness on germination success, seedling morphology, and seedling production by comparing experimental assemblages of seeds collected from single reproductive shoots ("monocultures") to assemblages of seeds collected from multiple reproductive shoots ("polycultures").
View Article and Find Full Text PDFWhen we set a species loose outside of its historical range, we create opportunities to test fundamental questions about how populations establish, adapt, disperse, and ultimately define range boundaries. A particularly controversial issue here is how genetic variation among and within populations contributes to the dynamics of species distributions. In this issue of Molecular Ecology, Rosenthal and colleagues (2008) seize an opportunity to examine how multiple introductions create genetically distinct establishment events and how these are incorporated into invasive spread.
View Article and Find Full Text PDFPopulations of intertidal species span a steep environmental gradient driven by differences in emersion time. In spite of strong differential selection on traits related to this gradient, the small spatial scale over which differences occur may prevent local adaptation, and instead may favor a single intermediate phenotype, or nongenetic mechanisms of differentiation. Here I examine whether a common macroalga, Silvetia compressa, exhibits phenotypic differentiation across the intertidal gradient and evaluate how local adaptation, developmental plasticity, and maternal effects may interact to shape individual phenotypes.
View Article and Find Full Text PDF