Study Objective: A phase 1/2 clinical trial was performed in individuals with cystathionine β synthase (CBS) deficient homocystinuria with aims to: (a) assess pharmacokinetics and safety of taurine therapy, (b) evaluate oxidative stress, inflammation, and vascular function in CBS deficiency, and (c) evaluate the impact of short-term taurine treatment.
Methods: Individuals with pyridoxine-nonresponsive CBS deficiency with homocysteine >50 μM, without inflammatory disorder or on antioxidant therapy were enrolled. Biomarkers of oxidative stress and inflammation, endothelial function (brachial artery flow-mediated dilation [FMD]), and disease-related metabolites obtained at baseline were compared to normal values.
Extreme hyperhomocysteinemia with low cystathionine and cysteine is virtually diagnostic of cystathionine beta-synthase (CBS) deficiency since remethylation defects and hypermethioninemia due to other inborn errors cause elevated serum cystathionine. However, a pregnant CBS deficient patient was found to have elevated cystathionine in addition to elevated total homocysteine and methionine at 23 weeks of gestation and post-delivery cystathionine decreased to the lower level of normal. A second patient with cystathionine values during gestation also showed a rise from the low pre-pregnant value to massive elevation by delivery.
View Article and Find Full Text PDFHomocystinuria (HCU) due to deficiency of cystathionine beta-synthetase is associated with increased plasma levels of homocysteine and methionine and is characterized by developmental delay, intellectual impairment, ocular defects, thromboembolism and skeletal abnormalities. HCU has been associated with increased risk for osteoporosis in some studies, but the natural history of HCU-related bone disease is poorly understood. The objective of this study was to characterize bone mineral density (BMD) measured by dual energy X-ray absorptiometry (DXA) in a multi-center, retrospective cohort of children and adults with HCU.
View Article and Find Full Text PDFBackground: This paper summarizes the results of a group effort to bring together the worldwide available data on patients who are either homozygotes or compound heterozygotes for mutations in MAT1A. MAT1A encodes the subunit that forms two methionine adenosyltransferase isoenzymes, tetrameric MAT I and dimeric MAT III, that catalyze the conversion of methionine and ATP to S-adenosylmethionine (AdoMet). Subnormal MAT I/III activity leads to hypermethioninemia.
View Article and Find Full Text PDFObjective: To study the impact of geographic access to care on metabolic control and compliance in phenylketonuria (PKU).
Study Design: Phenylalanine (Phe) levels and number of samples obtained were abstracted from a data base of 76 patients age <21 years and compared for age, sex, and distance to clinic. Levels and number of samples were compared to the clinic guidelines for age.
Cystathionine beta-synthase (CBS) deficient homocystinuria (HCU) is an inherited metabolic defect that if untreated, typically results in cognitive impairment, connective tissue disturbances, atherosclerosis and thromboembolic disease. In recent years, chronic inappropriate expression of the inflammatory response has emerged as a major driving force of both thrombosis and atherosclerotic lesion development. We report here a characterization of the abnormalities in cytokine expression induced in both a mouse model of HCU and human subjects with the disease in the presence and absence of homocysteine lowering therapy.
View Article and Find Full Text PDFWe investigated in a patient with holocarboxylase synthetase deficiency, the relation between the biochemical and genetic factors of the mutant protein with the pharmacokinetic factors of successful biotin treatment. A girl exhibited abnormal skin at birth, and developed in the first days of life neonatal respiratory distress syndrome and metabolic abnormalities diagnostic of multiple carboxylase deficiency. Enzyme assays showed low carboxylase activities.
View Article and Find Full Text PDFA 6-week-old child presented with hypotonia, myopathy, and a rapidly worsening dilated cardiomyopathy with severe atrial and ventricular arrhythmias and pulmonary hypertension, which proved fatal at age 3 months. Biochemical analysis showed a combined deficiency of the enzymatic activities of complexes I and IV and molecular studies identified a T14709C mutation in the mitochondrial tRNA glutamic acid gene. A review of symptomatology in patients with this mutation shows that it mainly presents in childhood or young adults with mild myopathy and diabetes mellitus.
View Article and Find Full Text PDF