Publications by authors named "Cynthia Elias"

Vaccines have been used to train the immune system to recognize pathogens, and prevent and treat diseases, such as cancer, for decades. However, there are continuing challenges in their manufacturing, large-scale production, and storage. Some of them also show suboptimal immunogenicity, requiring additional adjuvants and booster doses.

View Article and Find Full Text PDF

The hydrodynamics of gas-liquid two-phase flow in a single-use bioreactor were investigated in detail both experimentally and numerically. Electrical resistance tomography (ERT) and dynamic gas disengagement (DGD) combined with computational fluid dynamics (CFD) were employed to assess the effect of the volumetric gas flow rate and impeller speed on the gas-liquid flow field, local and global gas holdup values, and Sauter mean bubble diameter. From the results obtained from DGD coupled with ERT, the bubble sizes were determined.

View Article and Find Full Text PDF

Present study, for the first time, reports the development of a nanohybridized baculovirus based stent that can locally promote vascular re-endothelialization by efficient delivery of pro-angiogenic vascular endothelial growth factor (Vegf) genes. In vitro data demonstrated rapid expression of functionally active Vegf by the bioactive stent-transduced vascular cells. In vivo site-specific transgene expression was observed at the stented regions of balloon-denuded canine femoral artery, which eventually lead to significant endothelial recovery at the injured sites.

View Article and Find Full Text PDF

There are many methods presently available to produce recombinant proteins in mammalian systems. The BacMam system is a simple straightforward method which overlaps two well-established technologies, namely the BEVS insect cell system and the transduction of mammalian cells in vitro. This chapter describes a method for the study of gene expression in mammalian cells in a series of simple steps.

View Article and Find Full Text PDF

The study aims to design a new gene delivery method utilizing the complementary strengths of baculovirus, such as relatively high transduction efficiency and easy scale-up, and non-viral nanodelivery systems, such as low immunogenicity. This formulation was developed by generating a self assembled binary complex of negatively charged baculovirus (Bac) and positively charged endosomolytic histidine rich Tat peptide/DNA nanoparticles (NP). The synergistic effect of this hybrid (Bac-NP) system to induce myocardial angiogenesis in acute myocardial infarction (AMI) model has been explored in this study, using Angiopoietin-1 (Ang-1) as the transgene carried by both vector components.

View Article and Find Full Text PDF

Present therapeutic strategies for most cancers are restricted mainly to the primary tumors and are also not very effective in controlling metastatic states. Alternatively, gene therapy can be a potential option for treating such cancers. Currently mammalian viral-based cancer gene therapy is the most popular approach, but the efficacy has been shown to be quite low in clinical trials.

View Article and Find Full Text PDF

Human interleukin-7 (hIL-7) is a cytokine secreted by the stromal cells of the red marrow. It is important for proliferation during certain stages of B-cell maturation and for T and NK cell survival, development, and homeostasis. It is a critical growth factor for enhancement and recovery of the immune T-cell.

View Article and Find Full Text PDF

Interleukin-7 (IL-7) is a glycoprotein cytokine with significant clinical and biomedical potential, such as cancer therapy and HIV infections. Earlier it has been cloned and expressed in various protein expression systems; however, they are not efficient for large-scale production. To address this inadequacy, we report in this paper the production of recombinant human interleukin-7 (hIL-7) in insect cells.

View Article and Find Full Text PDF

The alpha, zeta, and epsilon isoforms of diacylglycerol kinase exhibit a high degree of stereospecificity in the phosphorylation of diacylglycerol. In comparison, a multiple lipid kinase, MuLK, shows much less stereospecificity, phosphorylating 1,2-dioleoylglycerol only approximately 2-3 times more rapidly than 2,3-dioleoylglycerol. The alpha and zeta isoforms of diacylglycerol kinase are inhibited by 2,3-dioleoylglycerol, but not the more substrate-selective epsilon isoform.

View Article and Find Full Text PDF

The production of recombinant proteins using the baculovirus expression vector system in large-scale agitated bioreactors is discussed in this chapter. Detailed methods of the key stages of a batch process, including host cell growth, virus stock amplification and quantification, bioreactor preparation and operation, the infection process, final harvesting, and primary separation steps for recovery of the product are presented. Furthermore, methods involved with online monitoring and bioreactor control, which have a significant impact on the overall success of the process, are provided, including advanced online monitoring of physiological parameters such as biovolume and respiration activity for batch and fed-batch insect cell cultures along with their role in operating high cell density cultures.

View Article and Find Full Text PDF

The development of insect cells expressing recombinant proteins in a stable continuous manner is an attractive alternative to the BEV system for recombinant protein production. High cell density fed batch and continuous perfusion processes can be designed to maximize the productivity of stably transformed cells. A cell line (Sf-9SEAP) expressing high levels of the reporter protein SEAP stably was obtained by lipid-mediated transfection of Sf-9 insect cells and further selection and screening.

View Article and Find Full Text PDF

The insect cell baculovirus expression vector system (BEVS) is one of the most commonly used expression systems for recombinant protein production. This system is also widely used for the production of recombinant virus and virus-like particles. Although several published reports exist on recombinant protein expression using insect cells, information dealing with their metabolism in vitro is relatively scarce.

View Article and Find Full Text PDF

Metabolic engineering has been defined as a directed improvement of product formation or cellular properties by modification of specific biochemical pathways or introduction of new enzymatic reactions by recombinant DNA technology. The use of metabolic flux analysis (MFA) has helped in the understanding of the key limitation in the metabolic pathways of cultured animal cells. The MFA of the major nutrients glucose and glutamine showed that the flux of glucose to the TCA cycle and its subsequent utilization is limited as a result of the lack of certain key enzymes in the pathway.

View Article and Find Full Text PDF