The gonococcal pilus is a major virulence factor that has well-established roles in mediating epithelial cell adherence and DNA transformation. Gonococci expressing four gonococcal pilin variants with distinct piliation properties under control of the lac regulatory system were grown in different levels of the inducer isopropyl-beta-D-thiogalactopyranoside (IPTG). These pilin variants expressed various levels of pilin message and pilin protein in response to the level of IPTG in the growth medium.
View Article and Find Full Text PDFForce production by type IV pilus retraction is critical for infectivity of Neisseria gonorrhoeae and DNA transfer. We investigated the roles of pilus number and the retraction motor, PilT, in force generation in vivo at the single-molecule level and found that individual retraction events are generated by a single pilus fiber, and only one PilT complex powers retraction. Retraction velocity is constant at low forces but decreases at forces greater than 40 pN, giving a remarkably high average stall force of 110 +/- 30 pN.
View Article and Find Full Text PDF