Inducing osteogenic differentiation in vitro is useful for the identification and development of bone regeneration therapies as well as modelling bone disorders. To couple in vitro models with high throughput screening techniques retains the assay's relevance in research while increasing its therapeutic impact. Miniaturizing, automating and/or digitalizing in vitro assays will reduce the required quantity of cells, biologic stimulants, culture/output assay reagents, time and cost.
View Article and Find Full Text PDFThe current gold standard grafting material is autologous bone due to its osteoinductive and osteoconductive properties. Autograft harvesting results in donors site morbidity. Coral scaffolds offer a natural autograft alternative, sharing the density and porosity of human bone.
View Article and Find Full Text PDFBackground: Mesenchymal stem/stromal cells (MSC) have been employed successfully in immunotherapy and regenerative medicine, but their therapeutic potential is reduced considerably by the ischemic environment that exists after transplantation. The assumption that preconditioning MSC to promote quiescence may result in increased survival and regenerative potential upon transplantation is gaining popularity.
Methods: The purpose of this work was to evaluate the anti-inflammatory and regenerative effects of human bone marrow MSC (hBM-MSC) and their extracellular vesicles (EVs) grown and isolated in a serum-free medium, as compared to starved hBM-MSC (preconditioned) in streptozotocin-induced diabetic fractured male C57BL/6J mice.
Background: There is a plethora of research on the association of parity and duration of lactation with bone mineral density (BMD) during and after pregnancy. However, there are no consensus conclusions on the impact of the duration of lactation on BMD.
Aims: The aim of this study was to examine the effect of pregnancy, and the duration of lactation on BMD during pregnancy, postpartum phase and 12 months post-delivery.
Individuals living with type 1 diabetes mellitus may experience an increased risk of long bone fracture. These fractures are often slow to heal, resulting in delayed reunion or non-union. It is reasonable to theorize that the underlying cause of these diabetes-associated osteopathies is faulty repair dynamics as a result of compromised bone marrow progenitor cell function.
View Article and Find Full Text PDFHuman bone marrow-derived mesenchymal stromal cells (MSCs) have been investigated in numerous disease settings involving impaired regeneration because of the crucial role they play in tissue maintenance and repair. Considering the number of comorbidities associated with type 2 diabetes mellitus (T2DM), the hypothesis that MSCs mediate these comorbidities via a reduction in their native maintenance and repair activities is an intriguing line of inquiry. Here, it is demonstrated that the number of bone marrow-derived MSCs in people with T2DM was reduced compared to that of age-matched control (AMC) donors and that this was due to a specific decrease in the number of MSCs with osteogenic capacity.
View Article and Find Full Text PDFOsteoporosis is associated with systemic bone loss, leading to a significant deterioration of bone microarchitecture and an increased fracture risk. Although recent studies have shown that the distribution of bone mineral becomes more heterogeneous because of estrogen deficiency in animal models of osteoporosis, it is not known whether osteoporosis alters mineral distribution in human bone. Type 2 diabetes mellitus (T2DM) can also increase bone fracture risk and is associated with impaired bone cell function, compromised collagen structure, and reduced mechanical properties.
View Article and Find Full Text PDFThe purpose of this study was to investigate the knowledge, perceptions and concerns of individuals living with diabetes mellitus regarding the disorder and its associated long-term health complications. Individuals living with type 1 ( = 110) and type 2 ( = 100) diabetes were surveyed at the Diabetes Centre at University Hospital Galway (Ireland). A questionnaire was used to record respondent's perceptions and concerns about living with diabetes and developing associated long-term health complications, especially diabetes-induced osteopathy.
View Article and Find Full Text PDFDiabetes mellitus (DM) is associated with an elevated risk of post-operative complications. The impact it has on patients living with DM following hip fracture surgery (HFS) is not completely understood and may represent a predictor of increased mortality. This study investigates the impact of DM, gender, American Society of Anaesthesiologists (ASA) grade, and fracture location, on the outcome of HFS in Ireland.
View Article and Find Full Text PDFLong-term exposure to a diabetic environment leads to changes in bone metabolism and impaired bone micro-architecture through a variety of mechanisms on molecular and structural levels. These changes predispose the bone to an increased fracture risk and impaired osseus healing. In a clinical practice, adequate control of diabetes mellitus is essential for preventing detrimental effects on bone health.
View Article and Find Full Text PDFScholars and professional organizations in bioethics describe various approaches to "quality assessment" in clinical ethics. Although much of this work represents significant contributions to the literature, it is not clear that there is a robust and shared understanding of what constitutes "quality" in clinical ethics, what activities should be measured when tracking clinical ethics work, and what metrics should be used when measuring those activities. Further, even the most robust quality assessment efforts to date are idiosyncratic, in that they represent evaluation of single activities or domains of clinical ethics activities, or a range of activities at a single hospital or healthcare system.
View Article and Find Full Text PDFArticular cartilage lacks an intrinsic repair capacity and due to the ability of mesenchymal stem cells (MSCs) to differentiate into chondrocytes, MSCs have been touted as a cellular source to regenerate damaged cartilage. However, a number of prevailing concerns for such a treatment remain. Generally, administration of MSCs into a cartilage defect results in poor regeneration of the damaged cartilage with the repaired cartilage consisting primarily of fibro-cartilage rather than hyaline cartilage.
View Article and Find Full Text PDFBackground: Determining the distributive fate and retention of a cell therapy product after administration is an essential part of characterizing it's biosafety profile. Therefore, regulatory guidelines stipulate that biodistribution assays are a requirement prior to advancing a cell therapy to the clinic. Here the development of a highly sensitive quantitative polymerase chain reaction (qPCR)-based method of tracking the biodistribution and retention of human mesenchymal stromal cells (hMSCs) in mice, rats or rabbits is described.
View Article and Find Full Text PDFIntroduction: Local delivery of mesenchymal stem cells (MSCs) to the acutely injured or osteoarthritic joint retards cartilage destruction. However, in the absence of assistive materials the efficiency of engraftment of MSCs to either intact or fibrillated cartilage is low and localization is further reduced by natural movement of the joint surfaces. It is hypothesised that enhanced engraftment of the delivered MSCs at the cartilage surface will increase their reparative effect and that the application of a bioadhesive to the degraded cartilage surface will provide improved cell retention.
View Article and Find Full Text PDFCurr Stem Cell Res Ther
January 2016
Long bone fractures in diabetics are slower to heal, have an increased risk of developing non-union and demonstrate greater potential of infection and perioperative complications compared to non-diabetics. The causative aberrant bone mineral density and insufficient bone microstructure of diabetic patients are thought to result from altered osteoblast and osteocyte function, increased bone marrow adiposity, decreased progenitor osteo- and chondral differentiation potential and increased pro-inflammatory cytokine circulation. It is therefore reasonable to hypothesize that the root cause of faulty diabetic bone homeostasis and fracture repair is a reduced population of bone marrow progenitor cells and/or their decreased osteochondral capacity complicated by their repressed neo-vascular potential.
View Article and Find Full Text PDFMesenchymal stem cells (MSCs) are an adult stromal cell population possessing potent differentiation capacity and a potential for use across major histocompatibility complex barriers. Although allogeneic MSCs have potent immunosuppressive properties, evidence also suggests that they elicit a weak allogeneic immune response. However, the effect of induced differentiation on the immunosuppressive ability and immunogenicity of allogeneic MSCs is a potential obstacle when applying MSCs in tissue replacement therapies.
View Article and Find Full Text PDFAllogeneic mesenchymal stem cells (allo-MSCs) have potent regenerative and immunosuppressive potential and are being investigated as a therapy for osteoarthritis; however, little is known about the immunological changes that occur in allo-MSCs after ex vivo induced or in vivo differentiation. Three-dimensional chondrogenic differentiation was induced in an alginate matrix, which served to immobilize and potentially protect MSCs at the site of implantation. We show that allogeneic differentiated MSCs lost the ability to inhibit T-cell proliferation in vitro, in association with reduced nitric oxide and prostaglandin E2 secretion.
View Article and Find Full Text PDFThe regenerative potential for adult bone marrow-derived mesenchymal stromal cells (MSCs) has been extensively investigated in the setting of arthritic disease and focal cartilage defects. In vitro chondrogenic differentiation of MSCs is regularly accomplished by the widely used pellet culture system where MSCs are maintained in high-density pellets to mimic mesenchymal condensation during development. Supplementation of chondrogenic MSC pellet cultures with growth differentiation factor-5 (GDF-5), a highly regulated gene in the chondrogenic phase of endochondral ossification (EO), was investigated here under the hypothesis that GDF-5 will enhance the chondrogenic differentiation of MSCs, thereby supporting their entry into ossification.
View Article and Find Full Text PDFArticular cartilage is a complex, multilayered biological composite material, comprised of chondrocytes encapsulated in a water-based glycosaminoglycan matrix reinforced with collagen fibers. Once damaged by osteoarthritis or traumatic injury, this aneural, avascular tissue has little self-repair capacity. Over the last 20 years, cell therapies and tissue-engineering strategies have shown significant promise for the repair or regeneration of damaged cartilage.
View Article and Find Full Text PDFBackground: Growth differentiation factor-5 (GDF-5) is a key regulator of skeletogenesis and bone repair and induces bone formation in spinal fusions and nonunion applications by enhancing chondrocytic and osteocytic differentiation and stimulating angiogenesis. Elucidating the contribution of GDF-5 to fracture repair may support its clinical application in complex fractures.
Questions/purpose: We therefore asked whether the absence of GDF-5 during fracture repair impaired bone healing as assessed radiographically, histologically, and mechanically.
Stem Cell Res Ther
February 2011
Mesenchymal progenitor cells, a multipotent adult stem cell population, have the ability to differentiate into cells of connective tissue lineages, including fat, cartilage, bone and muscle, and therefore generate a great deal of interest for their potential use in regenerative medicine. During development, endochondral bone is formed from a template of cartilage that transforms into bone; however, mature articular cartilage remains in the articulating joints, where its principal role is reducing friction and dispersing mechanical load. Articular cartilage is prone to damage from sports injuries or ageing, which regularly progresses to more serious joint disorders, such as osteoarthritis.
View Article and Find Full Text PDFMultipotent mesenchymal stromal or stem cells (MSCs) are likely to be agents of connective tissue homeostasis and repair. Because the hallmark of osteoarthritis (OA) is degeneration and failure to repair connective tissues it is compelling to think that these cells have a role to play in OA. Indeed, MSCs have been implicated in the pathogenesis of OA and, in turn, progression of the disease has been shown to be therapeutically modulated by MSCs.
View Article and Find Full Text PDFBirth Defects Res C Embryo Today
September 2008
Although the chick embryo, including its extraembryonic membranes, has long been used as a model for developmental biology, its potential as a model for the repair and regeneration of adult human tissues is often overlooked. The chick offers a well-defined profile of intercellular and intracellular signaling pathways regulating the development of nearly every organ system in conjunction with great flexibility for chimeric and transgenic experiments. Depending upon the system of interest, the chick can either directly reflect the human condition, as in spinal cord repair or in chorioallantoic membrane wound healing, and therefore act as an in vivo model for repair, or mirror our aspired therapy as in limb generation or otic restoration and therefore act as our guide.
View Article and Find Full Text PDFAnat Rec A Discov Mol Cell Evol Biol
December 2003
Growth/differentiation factor 5 (GDF5) regulates connexin expression and enhances embryonic chondrogenesis in a gap junction-dependent manner, suggesting that GDF5 action on developmental skeletogenesis is coordinated with gap junction activities. The results shown here demonstrate concordance between the mRNA expression profiles of GDF5 and the gap junction gene, Cx43, in the mouse embryonic limb, spine, and heart, consistent with coordinated functions for these gene products during developmental organogenesis.
View Article and Find Full Text PDF