We studied the adsorption and thermal behavior of the nitrile-functionalized ionic liquid (IL) [CCNCIm][TfN] on Au(111) and Pt(111) between 150 and 600 K. Ultrathin films were prepared at 150 K by physical vapor deposition (PVD) and were characterized by angle resolved X-ray photoelectron spectroscopy (ARXPS). At 150 K, the IL adsorbs intact with a similar orientation on both surfaces: In the first layer, the so-called wetting layer, the cation lies flat on the surface and the anion is bound in -configuration with the SO groups toward the surface and the CF groups away from the surface.
View Article and Find Full Text PDFPorphyrins are large organic molecules that are interesting for different applications, such as photovoltaic cells, gas sensors, or in catalysis. For many of these applications, the interactions between adsorbed molecules and surfaces play a crucial role. Studies of porphyrins on surfaces typically fall into one of two groups: (1) evaporation onto well-defined single-crystal surfaces under well-controlled ultrahigh vacuum conditions or (2) more application-oriented wet chemical deposition onto less well-defined high surface area surfaces under ambient conditions.
View Article and Find Full Text PDFWe describe a method to study porous thin-films deposited onto rotating disc electrodes (RDE) applied to non-platinum group electrocatalyst obtained by pyrolysis of iron phthalocyanine and carbon, FePc/C. The electroactive area and porous properties of the thin film electrodes were obtained using electrochemical impedance spectroscopy under the framework of de Levie impedance model. The electrocatalytic activity of different electrodes was correlated to the total electroactive area () and the penetration ratio parameter through the film under ac current.
View Article and Find Full Text PDF