Publications by authors named "Cynthia C Hession"

Microglial-derived inflammation has been linked to a broad range of neurodegenerative and neuropsychiatric conditions, including amyotrophic lateral sclerosis (ALS). Using single-cell RNA sequencing, a class of Disease-Associated Microglia (DAMs) have been characterized in neurodegeneration. However, the DAM phenotype alone is insufficient to explain the functional complexity of microglia, particularly with regard to regulating inflammation that is a hallmark of many neurodegenerative diseases.

View Article and Find Full Text PDF

Background: Many neurodegenerative diseases develop only later in life, when cells in the nervous system lose their structure or function. In many forms of neurodegenerative diseases, this late-onset phenomenon remains largely unexplained.

Results: Analyzing single-cell RNA sequencing from Alzheimer's disease (AD) and Huntington's disease (HD) patients, we find increased transcriptional heterogeneity in disease-state neurons.

View Article and Find Full Text PDF
Article Synopsis
  • The thalamic reticular nucleus (TRN) is crucial for sensory processing, attention, and cognition, with dysfunction linked to various neurodevelopmental disorders.
  • Researchers studied the TRN in mice, uncovering two distinct neuron subpopulations characterized by different gene-expression profiles and electrophysiological properties.
  • The study also showed how these TRN subpopulations connect with thalamic nuclei and play different roles in regulating sleep, offering new insights into the organization of thalamocortical circuits.
View Article and Find Full Text PDF

The scale and capabilities of single-cell RNA-sequencing methods have expanded rapidly in recent years, enabling major discoveries and large-scale cell mapping efforts. However, these methods have not been systematically and comprehensively benchmarked. Here, we directly compare seven methods for single-cell and/or single-nucleus profiling-selecting representative methods based on their usage and our expertise and resources to prepare libraries-including two low-throughput and five high-throughput methods.

View Article and Find Full Text PDF

The four voltage-gated sodium channels SCN1/2/3/8A have been associated with heterogeneous types of developmental disorders, each presenting with disease specific temporal and cell type specific gene expression. Using single-cell RNA sequencing transcriptomic data from humans and mice, we observe that SCN1A is predominantly expressed in inhibitory neurons. In contrast, SCN2/3/8A are profoundly expressed in excitatory neurons with SCN2/3A starting prenatally, followed by SCN1/8A neonatally.

View Article and Find Full Text PDF

Understanding neurological diseases requires tractable genetic systems. Engineered 3D neural tissues are an attractive choice, but how the cellular transcriptomic profiles in these tissues are affected by the encapsulating materials and are related to the human-brain transcriptome is not well understood. Here, we report the characterization of the effects of culturing conditions on the transcriptomic profiles of induced neuronal cells, as well as a method for the rapid generation of 3D co-cultures of neuronal and astrocytic cells from the same pool of human embryonic stem cells.

View Article and Find Full Text PDF