Publications by authors named "Cynthia C Bennington"

Plants are often genetically specialized as ecotypes attuned to local environmental conditions. When conditions change, the optimal environment may be physically displaced from the local population, unless dispersal or in situ evolution keep pace, resulting in a phenomenon called adaptational lag. Using a 30-year-old reciprocal transplant study across a 475 km latitudinal gradient, we tested the adaptational lag hypothesis by measuring both short-term (tiller population growth rates) and long-term (17-year survival) fitness components of Eriophorum vaginatum ecotypes in Alaska, where climate change may have already displaced the optimum.

View Article and Find Full Text PDF

Premise Of The Study: In a large reciprocal transplant experiment, Eriophorum vaginatum tussocks transplanted along a latitudinal gradient in Alaska's interior exhibited genetic differentiation and phenotypic plasticity for vegetative traits. Using the same tussocks 30 yr later, we used estimates of growing season temperature at each site to ask whether there was a climatic cline for stomatal density, size, and conductance.

Methods: We created impressions of the abaxial leaf surfaces of the transplanted individuals for viewing under a microscope and measured stomatal density (SD) and length (SL) for 224 individuals.

View Article and Find Full Text PDF

Because interactions among plants are spatially local, the scale of environmental heterogeneity can have large effects on evolutionary dynamics. However, very little is known about the spatial patterns of variation in fitness and the relative magnitude of spatial and temporal variation in selection. Replicates of 12 genotypes of Erigeron annuus (Asteraceae) were planted in 288 locations within a field, separated by distances of 0.

View Article and Find Full Text PDF

Population response to selection depends on the presence of additive genetic variance for traits under selection. When a population enters an alien environment, environment-induced changes in the expression of genetic variance may occur. These could have large effects on the response to selection.

View Article and Find Full Text PDF

Multiple-regression techniques for measuring phenotypic selection have been used in a large number of recent field studies. One benefit of this technique is its ability to discern the direct action of selection on traits by removing effects of correlated traits. However, covariation among traits expressed at different stages in an organism's life history is often poorly estimated because individuals that die before reaching adulthood cannot be measured as adults.

View Article and Find Full Text PDF