As a gut-restricted, nonabsorbed therapy, polymeric bile acid sequestrants (BAS) play an important role in managing hyperlipidemia and hyperglycemia. Similarly, nonabsorbable sequestrants of dietary phosphate have been used for the management of hyperphosphatemia in end-stage renal disease. To evaluate the potential utility of such polymer sequestrants to treat type 2 diabetes (T2D) and its associated renal and cardiovascular complications, we synthesized a novel polymeric sequestrant, SAR442357, possessing optimized bile acid (BA) and phosphate sequestration characteristics.
View Article and Find Full Text PDFUnderlying pathogenic mechanisms in chronic kidney disease (CKD) include chronic inflammation, oxidant stress, and matrix remodeling associated with dysregulated nuclear factor- B, nuclear factor- B, and SMAD signaling pathways, respectively. Important cytoprotective mechanisms activated by oxidative inflammatory conditions are mediated by nitrated fatty acids that covalently modify proteins to limit inflammation and oxidant stress. In the present study, we evaluated the effects of chronic treatment with CXA-10 (10-nitro-9(E)-octadec-9-enoic acid) in the uninephrectomized deoxycorticosterone acetate-high-salt mouse model of CKD.
View Article and Find Full Text PDFThe KK.Cg-A (y) /J (KK-A (y) ) mouse strain is a previously described model of type 2 diabetes with renal impairment. In the present study, female KK-A (y) mice received an elevated fat content diet (24% of calories), and a cohort was uninephrectomized (Unx) to drive renal disease severity.
View Article and Find Full Text PDFConsiderable evidence has demonstrated that transforming growth factor β (TGF-β) plays a key role in hepatic fibrosis, the final common pathway for a variety of chronic liver diseases leading to liver insufficiency. Although a few studies have reported that blocking TGF-β with soluble receptors or siRNA can prevent the progression of hepatic fibrosis, as yet no evidence has been provided that TGF-β antagonism can improve pre-existing hepatic fibrosis. The aim of this study was to examine the effects of a murine neutralizing TGF-β monoclonal antibody (1D11), in a rat model of thioacetamide (TAA)-induced hepatic fibrosis.
View Article and Find Full Text PDFThe incidence of cardiovascular events and mortality strongly correlates with serum phosphate in individuals with CKD. The Npt2b transporter contributes to maintaining phosphate homeostasis in the setting of normal renal function, but its role in CKD-associated hyperphosphatemia is not well understood. Here, we used adenine to induce uremia in both Npt2b-deficient and wild-type mice.
View Article and Find Full Text PDFBackground: Activated vitamin D analog, paricalcitol, has been shown to attenuate the development of cardiac hypertrophy in Dahl salt sensitive (DSS) rats. To determine whether an antihypertrophic effect is class specific, we tested if doxercalciferol (a pro-hormone vitamin D2 analog) could also attenuate the development of cardiac hypertrophy in DSS rats.
Methods And Results: Male DSS rats were fed a high salt (HS) diet for 6 weeks beginning at 6 weeks of age.
Diet-induced obesity (DIO) and insulin resistance in mice are associated with proteinuria, renal mesangial expansion, accumulation of extracellular matrix proteins, and activation of oxidative stress, proinflammatory cytokines, profibrotic growth factors, and the sterol regulatory element binding proteins, SREBP-1 and SREBP-2, that mediate increases in fatty acid and cholesterol synthesis. The purpose of the present study was to determine whether treatment of DIO mice with the vitamin D receptor (VDR) agonist doxercalciferol (1α-hydroxyvitamin D2) prevents renal disease. Our results indicate that treatment of DIO mice with the VDR agonist decreases proteinuria, podocyte injury, mesangial expansion, and extracellular matrix protein accumulation.
View Article and Find Full Text PDFBackground: Obesity is characterized by the accumulation of fat in the liver and other tissues, leading to insulin resistance. We have previously shown that a specific inhibitor of glucosylceramide synthase, which inhibits the initial step in the synthesis of glycosphingolipids (GSLs), improved glucose metabolism and decreased hepatic steatosis in both ob/ob and diet-induced obese (DIO) mice. Here we have determined in the DIO mouse model the efficacy of a related small molecule compound, Genz-112638, which is currently being evaluated clinically for the treatment of Gaucher disease, a lysosomal storage disorder.
View Article and Find Full Text PDFIntestinal phosphate absorption occurs through both a paracellular mechanism involving tight junctions and an active transcellular mechanism involving the type II sodium-dependent phosphate cotransporter NPT2b (SLC34a2). To define the contribution of NPT2b to total intestinal phosphate absorption, we generated an inducible conditional knockout mouse, Npt2b(-/-) (Npt2b(fl/fl):Cre(+/-)). Npt2b(-/-) animals had increased fecal phosphate excretion and hypophosphaturia, but serum phosphate remained unchanged.
View Article and Find Full Text PDFThe intrarenal renin-angiotensin system (RAS) plays a key role in the development of diabetic nephropathy. Recently, we showed that combination therapy with an AT(1) receptor blocker (ARB) and an activated vitamin D analog produced excellent synergistic effects against diabetic nephropathy, as a result of blockade of the ARB-induced compensatory renin increase. Given the diversity of vitamin D analogs, here we used a pro-drug vitamin D analog, doxercalciferol (1alpha-hydroxyvitamin D(2)), to further test the efficacy of the combination strategy in long-term treatment.
View Article and Find Full Text PDFUnlabelled: Steatosis in the liver is a common feature of obesity and type 2 diabetes and the precursor to the development of nonalcoholic steatohepatitis (NASH), cirrhosis, and liver failure. It has been shown previously that inhibiting glycosphingolipid (GSL) synthesis increases insulin sensitivity and lowers glucose levels in diabetic rodent models. Here we demonstrate that inhibiting GSL synthesis in ob/ob mice not only improved glucose homeostasis but also markedly reduced the development of hepatic steatosis.
View Article and Find Full Text PDFAdipose tissue is a critical mediator in obesity-induced insulin resistance. Previously we have demonstrated that pharmacological lowering of glycosphingolipids and subsequently GM3 by using the iminosugar AMP-DNM, strikingly improves glycemic control. Here we studied the effects of AMP-DNM on adipose tissue function and inflammation in detail to provide an explanation for the observed improved glucose homeostasis.
View Article and Find Full Text PDFObesity is a significant healthcare problem worldwide and increases the risk of developing debilitating diseases including type 2 diabetes, cardiovascular disease, and cancer. Although the health benefits of weight reduction are well-recognized, weight loss by diet and exercise fail in most patients, and the current marketed drugs have had limited success. It is clear that there is a significant unmet medical need for safe and effective weight-reducing agents.
View Article and Find Full Text PDF