Publications by authors named "Cynthia Abarrategui Garrido"

C3 glomerulopathies (C3G) are a group of severe renal diseases with distinct patterns of glomerular inflammation and C3 deposition caused by complement dysregulation. Here we report the identification of a familial C3G-associated genomic mutation in the gene complement factor H–related 1 (CFHR1), which encodes FHR1. The mutation resulted in the duplication of the N-terminal short consensus repeats (SCRs) that are conserved in FHR2 and FHR5.

View Article and Find Full Text PDF

The autoimmune form of atypical hemolytic uremic syndrome (HUS) is characterized by circulating autoantibodies against the complement regulator factor H, and is often associated with deficiency of the factor H-related proteins CFHR1 and CFHR3. Here we studied whether anti-factor H autoantibodies crossreact with CFHR1, and determined functional consequences of this. In ELISA, anti-factor H immunoglobulin G (IgG) autoantibodies from 24 atypical HUS patients bound to the short consensus repeat 20 domain of factor H, 21 antibodies also recognized CFHR1, but none CFHR3.

View Article and Find Full Text PDF

The factor H-related protein family (CFHR) is a group of minor plasma proteins genetically and structurally related to complement factor H (fH). Notably, deficiency of CFHR1/CFHR3 associates with protection against age-related macular degeneration and with the presence of anti-fH autoantibodies in atypical hemolytic uremic syndrome (aHUS). We have developed a proteomics strategy to analyze the CFHR proteins in plasma samples from controls, patients with aHUS, and patients with type II membranoproliferative glomerulonephritis.

View Article and Find Full Text PDF

Atypical hemolytic uremic syndrome is associated with mutations in the complement proteins factor H, factor I, factor B, C3, or membrane cofactor protein in about 50% of patients. The evolution and prognosis of the disease in patients carrying mutations in factor H is particularly poor, and renal transplantation most often fails because of recurrence of the disease in the graft. The risk of rapid loss of renal function in patients with functional mutations in factor H requires that effective treatment be initiated as soon as possible, but identification of these patients relies on genetic studies that are time consuming.

View Article and Find Full Text PDF

Complement Factor I (CFI) is a regulator of the classical and alternative pathways. CFI has enzymatic activity and is able to cleave C3b and C4b. Homozygous Factor I deficiency is associated with infectious and/or autoimmune diseases.

View Article and Find Full Text PDF

Hemolytic uremic syndrome (HUS) is an important cause of acute renal failure in children. Mutations in one or more genes encoding complement-regulatory proteins have been reported in approximately one-third of nondiarrheal, atypical HUS (aHUS) patients, suggesting a defect in the protection of cell surfaces against complement activation in susceptible individuals. Here, we identified a subgroup of aHUS patients showing persistent activation of the complement alternative pathway and found within this subgroup two families with mutations in the gene encoding factor B (BF), a zymogen that carries the catalytic site of the complement alternative pathway convertase (C3bBb).

View Article and Find Full Text PDF

Atypical hemolytic uremic syndrome (aHUS) is a disease of hemolytic anemia, thrombocytopenia, and renal failure associated with defective alternative pathway (AP) complement control. Previously, we presented a database (www.FH-HUS.

View Article and Find Full Text PDF

Mutations in the complement regulators factor H, membrane cofactor protein (MCP), and factor I are associated with atypical hemolytic uremic syndrome (aHUS, MIM 235400), suggesting that the disease develops as a consequence of the inefficient protection of the renal endothelium from damage by the complement system. Incomplete penetrance of the disease in individuals carrying these mutations is, however, relatively frequent. Here, we report the identification of a large, multiple affected aHUS pedigree in which there is independent segregation of three different aHUS risk factors: a MCP missense mutation (c.

View Article and Find Full Text PDF