Publications by authors named "Cynthia A Gates"

Reversible tetrapeptide-based compounds have been shown to effectively inhibit the hepatitis C virus NS3.4A protease. Inhibition of viral replicon RNA production in Huh-7 cells has also been demonstrated.

View Article and Find Full Text PDF

VX-950 is a potent, selective, peptidomimetic inhibitor of the hepatitis C virus (HCV) NS3-4A serine protease, and it demonstrated excellent antiviral activity both in genotype 1b HCV replicon cells (50% inhibitory concentration [IC50] = 354 nM) and in human fetal hepatocytes infected with genotype 1a HCV-positive patient sera (IC50 = 280 nM). VX-950 forms a covalent but reversible complex with the genotype 1a HCV NS3-4A protease in a slow-on, slow-off process with a steady-state inhibition constant (K(i)*) of 7 nM. Dissociation of the covalent enzyme-inhibitor complex of VX-950 and genotype 1a HCV protease has a half-life of almost an hour.

View Article and Find Full Text PDF

VX-950 is a potent, small molecule, peptidomimetic inhibitor of the hepatitis C virus (HCV) NS3.4A serine protease and has recently been shown to possess antiviral activity in a phase I trial in patients chronically infected with genotype 1 HCV. In a previous study, we described in vitro resistance mutations against either VX-950 or another HCV NS3.

View Article and Find Full Text PDF

We recently described the identification of an optimized alpha-ketoamide warhead for our series of HCV NS3.4A inhibitors. We report herein a series of HCV protease inhibitors incorporating 3-alkyl-substituted prolines in P(2).

View Article and Find Full Text PDF

The alpha-ketoamide warhead (e.g., 15) was found to be a practical replacement for aliphatic aldehydes in a series of HCV NS3.

View Article and Find Full Text PDF

We have used a structure-based drug design approach to identify small molecule inhibitors of the hepatitis C virus (HCV) NS3.4A protease as potential candidates for new anti-HCV therapies. VX-950 is a potent NS3.

View Article and Find Full Text PDF

Tetrapeptide-based peptidomimetic compounds have been shown to effectively inhibit the hepatitis C virus NS3.4A protease without the need of a charged functionality. An aldehyde is used as a prototype reversible electrophilic warhead.

View Article and Find Full Text PDF

Novel 21,21-difluorovinyl steroids, designed as difluorinated C20(21) enol mimics of pregnenolone, were targeted as potential mechanism-based inhibitors of C17(20) lyase, a crucial enzyme in the biosynthesis of testosterone. Addition of (difluoromethyl)diphenylphosphine oxide reagent to 17-acetyl steroids was the approach chosen for the construction of these compounds. Of particular interest were the abnormal Wittig products which formed during attempted preparation of the triene 9.

View Article and Find Full Text PDF

20-fluoro-17(20)-pregnenolone derivatives were designed as enol mimics of pregnenolone. All of the targeted, novel fluoroolefins were potent inhibitors of C17(20) lyase.

View Article and Find Full Text PDF