J Microbiol Biol Educ
December 2017
Two out-of-class graphing activities related to hormonal regulation of the reproductive cycle and stress responses are used to determine whether student use of self-data vs. provided data increases engagement, learning outcomes, and attitude changes. Comparisons of quizzes and surveys for students using self- vs.
View Article and Find Full Text PDFNeuropharmacology
November 2016
Inflammatory cell infiltration and resident microglial activation within the central nervous system (CNS) are pathological events in multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE). While MS therapies target the peripheral immune system, no treatment is currently known to also modulate microglia. FMS-like tyrosine-3 (FLT-3) is expressed on hematopoietic and dendritic cells.
View Article and Find Full Text PDFParallel and perpendicular diffusion properties of water in the rat spinal cord were investigated 3 and 30 days after dorsal root axotomy, a specific insult resulting in early axonal degeneration followed by later myelin damage in the dorsal column white matter. Results from q-space analysis (i.e.
View Article and Find Full Text PDFDiffusion tensor imaging (DTI) and immunohistochemistry were used to examine axon injury in the rat spinal cord after unilateral L(2)-L(4) dorsal root axotomy at multiple time points (from 16 h to 30 d after surgery). Three days after axotomy, DTI revealed a lesion in the ipsilateral dorsal column extending from the lumbar to the cervical cord. The lesion showed significantly reduced parallel diffusivity and increased perpendicular diffusivity at day 3 compared with the contralateral unlesioned dorsal column.
View Article and Find Full Text PDFInflammation, demyelination, gliosis and axonal degeneration are pathological hallmarks of multiple sclerosis (MS) and experimental autoimmune encephalomyelitis. Axonal damage is thought to contribute to irreversible damage and functional impairment, but is difficult to quantify. Conventional MRI has been used to assess the inflammatory and demyelinating aspects of MS lesions, but more sensitive and specific methods are needed to identify axonal damage to monitor disease progression and to determine efficacy of putative neuroprotective agents.
View Article and Find Full Text PDFThe CD4(+) T lymphocyte has recently been found to promote facial motoneuron (FMN) survival after nerve injury. Signal Transducer and Activator of Transcription (STAT)4 and STAT6 are key proteins involved in the CD4(+) T cell differentiation pathways leading to T helper type (Th)1 and Th2 cell development, respectively. To determine which CD4(+) T cell subset mediates FMN survival, the facial nerve axotomy paradigm was applied to STAT4-deficient (-/-) and STAT6-/- mice.
View Article and Find Full Text PDFCD4+ T cells rescue facial motoneurons (FMN) from axotomy-induced cell death. The objective of this study is to determine if the CD4+ T regulatory subsets, CD4+CD25+ T or CD1d-restricted NKT cells are critical for FMN survival after facial nerve axotomy. Surviving FMN within facial motor nuclei from axotomized and control sides 4 weeks after axotomy were counted to determine percent FMN survival.
View Article and Find Full Text PDFIn the field of neuroimmunology, an emerging area of research involves the role that the immune system plays in neural injury and repair. Such immune:neural interactions may involve both neuroprotective and neurodestruction actions. To begin to address the compelling, and clinically relevant, issue of how the immune system impacts neural reparative processes, we combined the well described facial nerve injury paradigm, a simple neural injury model, with various immunodeficient mouse models, in order to delineate the contributing immune cells/factors involved in neural injury and repair.
View Article and Find Full Text PDFOur laboratory discovered that CD4-positive (CD4+) T cells of the immune system convey transitory neuroprotection to injured mouse facial motoneurons (FMNs) (Serpe et al., 1999, 2000, 2003). A fundamental question in the mechanisms responsible for neuroprotection concerns the identity of the cell(s) that serves as the antigen-presenting cell (APC) to activate the CD4+ T cells.
View Article and Find Full Text PDF