Publications by authors named "Cynthia A Batchelder"

Despite the enthusiasm for bioengineering of functional renal tissues for transplantation, many obstacles remain before the potential of this technology can be realized in a clinical setting. Viable tissue engineering strategies for the kidney require identification of the necessary cell populations, efficient scaffolds, and the 3D culture conditions to develop and support the unique architecture and physiological function of this vital organ. Our studies have previously demonstrated that decellularized sections of rhesus monkey kidneys of all age groups provide a natural extracellular matrix (ECM) with sufficient structural properties with spatial and organizational influences on human embryonic stem cell (hESC) migration and differentiation.

View Article and Find Full Text PDF

Renal cell carcinomas arise from the nephron but are heterogeneous in disease biology, clinical behavior, prognosis, and response to systemic therapy. Development of patient-specific in vitro models that efficiently and faithfully reproduce the in vivo phenotype may provide a means to develop personalized therapies for this diverse carcinoma. Studies to maintain and model tumor phenotypes in vitro were conducted with emerging three-dimensional culture techniques and natural scaffolding materials.

View Article and Find Full Text PDF

Establishment of a functional immune system has important implications for health and disease, yet questions remain regarding the mechanism, location, and timing of development of myeloid and lymphoid cell compartments. The goal of this study was to characterize the ontogeny of the myeloid-lymphoid system in rhesus monkeys to enhance current knowledge of the developmental sequence of B-cell (CD20, CD79), T-cell (CD3, CD4, CD8, FoxP3), dendritic cell (CD205), and macrophage (CD68) lineages in the fetus and infant. Immunohistochemical assessments addressed the temporal and spatial expression of select phenotypic markers in the developing liver, thymus, spleen, lymph nodes, gut-associated lymphoid tissue (GALT), and bone marrow with antibodies known to cross-react with rhesus cells.

View Article and Find Full Text PDF

An essential step in the translation of cell-based therapies for kidney repair involves preclinical studies in relevant animal models. Regenerative therapies in children with congenital kidney disease may provide benefit, but limited quantitative data on normal development is available to aid in identifying efficient protocols for repair. Nonhuman primates share many developmental similarities with humans and provide an important translational model for understanding nephrogenesis and morphological changes across gestation.

View Article and Find Full Text PDF

Initial steps in establishing an optimal strategy for functional bioengineered tissues is generation of three-dimensional constructs containing cells with the appropriate organization and phenotype. To effectively utilize rhesus monkey decellularized kidney scaffolds, these studies evaluated two key parameters: (1) residual scaffold components after decellularization including proteomics analysis, and (2) the use of undifferentiated human embryonic stem cells (hESCs) for recellularization in order to explore cellular differentiation in a tissue-specific manner. Sections of kidney and lung were selected for a comparative evaluation because of their similar pattern of organogenesis.

View Article and Find Full Text PDF

New therapies for severely damaged kidneys are needed due to limited regenerative capacity and organ donor shortages. The goal of this study was to repopulate decellularized kidney sections in vitro and to determine the impact of donor age on recellularization. This was addressed by generating decellularized kidney scaffolds from fetal, juvenile, and adult rhesus monkey kidney sections using a procedure that removes cellular components while preserving the structural and functional properties of the native extracellular matrix (ECM).

View Article and Find Full Text PDF

Purpose: The goals of this study were to optimize radiolabeling of renal lineages differentiated from human embryonic stem (hES) cells and use noninvasive imaging (positron emission tomography (PET) and bioluminescence imaging (BLI)) to detect the cells in fetal monkeys post-transplant.

Procedures: hES cells expressing firefly luciferase (5 × 10(6)) were radiolabeled with the optimized concentration of 10 μCi/ml (64)Cu-PTSM then transplanted under ultrasound guidance into early second trimester fetal monkey kidneys. Fetuses were imaged in utero with PET and tissues collected for analysis 3 days post-transplant.

View Article and Find Full Text PDF

Nonhuman primates share many developmental similarities with humans, thus they provide an important preclinical model for understanding the ontogeny of biomarkers of kidney development and assessing new cell-based therapies to treat human disease. To identify morphological and developmental changes in protein and RNA expression patterns during nephrogenesis, immunohistochemistry and quantitative real-time PCR were used to assess temporal and spatial expression of WT1, Pax2, Nestin, Synaptopodin, alpha-smooth muscle actin (α-SMA), CD31, vascular endothelial growth factor (VEGF), and Gremlin. Pax2 was expressed in the condensed mesenchyme surrounding the ureteric bud and in the early renal vesicle.

View Article and Find Full Text PDF

The goal of this study was the production of a decellularized kidney scaffold with structural, mechanical, and physiological properties necessary for engineering basic renal structures in vitro. Fetal, infant, juvenile, and adult rhesus monkey kidney sections were treated with either 1% (v/v) sodium dodecyl sulfate or Triton X-100 followed by quantitative and qualitative analysis. Comparison of decellularization agents and incubation temperatures demonstrated sodium dodecyl sulfate at 4 degrees C to be most effective in preserving the native architecture.

View Article and Find Full Text PDF

The renal glomerulus is composed of endothelial and mesangial cells with podocytes contributing to glomerular filtration. Podocyte damage is associated with renal disorders, thus there is interest in these cells for regenerative medicine. These studies investigated the use of extracellular matrix (ECM) to grow third trimester fetal monkey renal cortical cells and to assess mature podocytes in culture.

View Article and Find Full Text PDF

The development of the metanephric kidney was studied immunohistochemically across gestation in monkeys to identify markers of cell specification, and to aid in developing experimental paradigms for renal precursor differentiation from human embryonic stem cells (hESC). PAX2, an important kidney developmental marker, was expressed at the tips of the ureteric bud, in the surrounding condensing mesenchyme, and in the renal vesicle. Vimentin, a mesenchymal and renal marker, was strongly expressed in the metanephric blastema then found to be limited to the glomerulus and interstitial cells of the medulla and cortex.

View Article and Find Full Text PDF

Impaired placental angiogenesis during early pregnancy may result in placental defects that adversely affect development of nuclear-transfer (NT) embryos later in pregnancy. These experiments were designed to quantify and compare development of placental microvasculature and expression of genes associated with angiogenesis, including members of the VEGF and angiopoietin (Ang) families, in maternal and embryonic placental tissues of day 30 bovine concepti derived from NT or in vitro fertilization (IVF) followed by in vivo development to the blastocyst stage in the sheep oviduct. Microvascular volume density (MVD) within the caruncular tissues, as determined using Periodic Acid-Schiff's staining as well as immunohistochemical staining for von Willebrand's factor, was not different between NT- and IVF- derived pregnancies.

View Article and Find Full Text PDF

Although a majority of clones are born normal and apparently healthy, mortality rates of nearly 30% are described in many reports. Such losses are a major limitation of cloning technology and represent substantial economic investment as well as justifiable animal health and welfare concerns. Prospective, controlled studies are needed to understand fully the causes of neonatal mortality in clones and to develop preventive and therapeutic strategies to minimize losses.

View Article and Find Full Text PDF

The period immediately after birth is a vital time for all newborn calves as the cardiovascular, respiratory, and other organ systems adapt to life ex utero. Reported neonatal mortality rates suggest this period to be especially critical in cloned calves; yet prospective, controlled studies on the physiological status of these calves are lacking. The objectives of this study were to compare neonatal (birth to 48 h of age) physical and clinical characteristics and placental morphology of cloned and embryo transfer control calves delivered by cesarean section after induced labor.

View Article and Find Full Text PDF

Embryonic mortality and abnormal placental morphology have been reported by most researchers studying nuclear transfer (NT), and it now is accepted that placental anomalies and poor development of cloned embryos are related. As early as day 50 of gestation, cloned bovine concepti exhibit poor structural organization of the developing placentomes. These experiments were designed to identify alterations in maternal-fetal interactions during establishment of the placentas of NT-derived embryos at day 30 of gestation.

View Article and Find Full Text PDF

Potential applications of somatic cell nuclear transfer to agriculture and medicine are currently constrained by low efficiency and high rates of embryonic, fetal, and neonatal loss. Nuclear transfer efficiency in cattle was compared between three donor-cell treatments from a single animal, between four donor-cell treatments in sequential stages of differentiation from a single cell lineage and genotype, and between the same cell type in two donors. Cumulus and granulosa donor cells resulted in a greater proportion of viable day-7 embryos than ear-skin cells; pregnancy rate and losses were not different among treatments.

View Article and Find Full Text PDF

Synopsis of recent research by authors named "Cynthia A Batchelder"

  • - Cynthia A. Batchelder's research focuses primarily on kidney tissue engineering and regenerative medicine, utilizing decellularized tissues from rhesus monkeys to create scaffolds that support the differentiation and growth of human embryonic stem cells (hESCs) for kidney repair and transplantation.
  • - Batchelder has explored various aspects of kidney organogenesis and pathology, including the development of renal cell carcinoma organoids and the characterization of renal development markers in nonhuman primates, which contribute to the understanding of human kidney diseases and treatment strategies.
  • - Her studies emphasize the importance of age-related differences in kidney donor sources and highlight the potential of three-dimensional culture models in developing personalized therapies for kidney diseases, thereby bridging the gap between experimental findings and clinical applications.

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: