Publications by authors named "Cymbeline T Culiat"

The microbiome influences health and disease through complex networks of host genetics, genomics, microbes, and environment. Identifying the mechanisms of these interactions has remained challenging. Systems genetics in laboratory mice () enables data-driven discovery of biological network components and mechanisms of host-microbial interactions underlying disease phenotypes.

View Article and Find Full Text PDF

Arthritis, an inflammatory condition that causes pain and cartilage destruction in joints, affects over 54.4 million people in the US alone. Here, for the first time, we demonstrated the emerging role of neural EGFL like 1 (NELL-1) in arthritis pathogenesis by showing that Nell-1-haploinsufficient (Nell-1) mice had accelerated and aggravated osteoarthritis (OA) progression with elevated inflammatory markers in both spontaneous primary OA and chemical-induced secondary OA models.

View Article and Find Full Text PDF

The pro-chondrogenic function of runt-related transcription factor 2 (Runx2) was previously considered to be dependent on direct binding with the promoter of Indian hedgehog (Ihh)-the major regulator of chondrocyte differentiation, proliferation, and maturation. The authors' previous studies identified neural EGFL like 1 (Nell-1) as a Runx2-responsive growth factor for chondrogenic differentiation and maturation. In this study, it was further revealed that the pro-chondrogenic activities of Nell-1 also rely on Ihh signaling, by showing: i) Nell-1 significantly elevated Ihh signal transduction; ii) Nell-1 deficiency markedly reduced Ihh activation in chondrocytes; and iii) Nell-1-stimulated chondrogenesis was significantly reduced by the specific hedgehog inhibitor cyclopamine.

View Article and Find Full Text PDF

NELL-1 is a secreted, osteogenic protein first discovered to control ossification of the cranial skeleton. Recently, NELL-1 has been implicated in bone maintenance. However, the cellular determinants of NELL-1's bone-forming effects are still unknown.

View Article and Find Full Text PDF

Recent studies indicate that neural EGFL-like 1 (Nell-1), a secretive extracellular matrix molecule, is involved in chondrogenic differentiation. Herein, we demonstrated that Nell-1 serves as a key downstream target of runt-related transcription factor 2 (Runx2), a central regulator of chondrogenesis. Unlike in osteoblast lineage cells where Nell-1 and Runx2 demonstrate mutual regulation, further studies in chondrocytes revealed that Runx2 tightly regulates the expression of Nell-1; however, Nell-1 does not alter the expression of Runx2.

View Article and Find Full Text PDF

NELL-1 is a secreted, osteoinductive protein whose expression rheostatically controls skeletal ossification. Overexpression of NELL-1 results in craniosynostosis in humans and mice, whereas lack of Nell-1 expression is associated with skeletal undermineralization. Here we show that Nell-1-haploinsufficient mice have normal skeletal development but undergo age-related osteoporosis, characterized by a reduction in osteoblast:osteoclast (OB:OC) ratio and increased bone fragility.

View Article and Find Full Text PDF

Biologic scaffolds composed of extracellular matrix (ECM) derived from decellularized tissues effectively reprogram key stages of the mammalian response to injury, altering the wound microenvironment from one that promotes scar tissue formation to one that stimulates constructive and functional tissue remodeling. In contrast, engineered scaffolds, composed of purified ECM components such as collagen, lack the complex ultrastructure and composition of intact ECM and may promote wound healing but lack factors that facilitate constructive and functional tissue remodeling. The objective of the present study was to test the hypothesis that addition of NELL1, a signaling protein that controls cell growth and differentiation, enhances the constructive tissue remodeling of a purified collagen scaffold.

View Article and Find Full Text PDF

Nell-1, first identified by its overexpression in synostotic cranial sutures, is a novel osteoinductive growth and differentiation factor. To further define Nell-1's role in craniofacial patterning, we characterized defects of the ENU-induced Nell-1-deficient (END) mice, focusing on both intramembranous and endochondral cranial bones. Results showed that calvarial bones of neonatal END mice were reduced in thickness and density, with a phenotype resembling calvarial cleidocraniodysplasia.

View Article and Find Full Text PDF

Genetic reference populations in model organisms are critical resources for systems genetic analysis of disease related phenotypes. The breeding history of these inbred panels may influence detectable allelic and phenotypic diversity. The existing panel of common inbred strains reflects historical selection biases, and existing recombinant inbred panels have low allelic diversity.

View Article and Find Full Text PDF

Nell-1 is a growth factor required for normal skeletal development and expression of extracellular matrix proteins required for bone and cartilage cell differentiation. We identified the transcription factor nuclear factor of activated T cells (Nfatc2) as a primary response gene of Nell-1 through a microarray screen, with validation using real-time polymerase chain reaction (PCR). We investigated the effects of recombinant Nell-1 protein on the chondrogenic cell line ATDC5 and primary mouse chondrocytes.

View Article and Find Full Text PDF

Mesenchymal stem cell commitment to an osteoprogenitor lineage requires the activity of Runx2, a molecule implicated in the etiopathology of multiple congenital craniofacial anomalies. Through promoter analyses, we have recently identified a new direct transcriptional target of Runx2, Nell-1, a craniosynostosis (CS)-associated molecule with potent osteogenic properties. This study investigated the mechanistic and functional relationship between Nell-1 and Runx2 in regulating osteoblast differentiation.

View Article and Find Full Text PDF

The auxiliary spliceosomal protein SCNM1 contributes to recognition of nonconsensus splice donor sites. SCNM1 was first identified as a modifier of the severity of a sodium channelopathy in the mouse. The most severely affected strain, C57BL/6J, carries the variant allele SCNM1R187X, which is defective in splicing the mutated donor site in the Scn8a(medJ) transcript.

View Article and Find Full Text PDF

Complex traits and disease comorbidity in humans and in model organisms are the result of naturally occurring polymorphisms that interact with each other and with the environment. To ensure the availability of resources needed to investigate biomolecular networks and systems-level phenotypes underlying complex traits, we have initiated breeding of a new genetic reference population of mice, the Collaborative Cross. This population has been designed to optimally support systems genetics analysis.

View Article and Find Full Text PDF

Near-naked hairless (Hr(N)) is a semi-dominant, spontaneous mutation that was suggested by allelism testing to be allelic with mouse Hairless (Hr). Hr(N) mice differ from other Hr mutants in that hair loss appears as the postnatal coat begins to emerge, rather than as an inability to regrow hair after the first catagen and that the mutation displays semi-dominant inheritance. We sequenced the Hr cDNA in Hr(N)/Hr(N) mice and characterized the pathological and molecular phenotypes to identify the basis for hair loss in this model.

View Article and Find Full Text PDF

The mammalian Nell1 gene encodes a protein kinase C-beta1 (PKC-beta1) binding protein that belongs to a new class of cell-signaling molecules controlling cell growth and differentiation. Over-expression of Nell1 in the developing cranial sutures in both human and mouse induces craniosynostosis, the premature fusion of the growing cranial bone fronts. Here, we report the generation, positional cloning and characterization of Nell1(6R), a recessive, neonatal-lethal point mutation in the mouse Nell1 gene, induced by N-ethyl-N-nitrosourea.

View Article and Find Full Text PDF

Using computational approaches we have identified 2017 expressed intronless genes in the mouse genome. Evolutionary analysis reveals that 56 intronless genes are conserved among the three domains of life--bacteria, archea and eukaryotes. These highly conserved intronless genes were found to be involved in essential housekeeping functions.

View Article and Find Full Text PDF

Background: Analysis of an allelic series of point mutations in a gene, generated by N-ethyl-N-nitrosourea (ENU) mutagenesis, is a valuable method for discovering the full scope of its biological function. Here we present an efficient gene-driven approach for identifying ENU-induced point mutations in any gene in C57BL/6J mice. The advantage of such an approach is that it allows one to select any gene of interest in the mouse genome and to go directly from DNA sequence to mutant mice.

View Article and Find Full Text PDF

We have used the new high-throughput mutation-scanning technique temperature-gradient capillary electrophoresis (TGCE) for the identification of point mutations induced by N-ethyl-N-nitrosourea (ENU) in the mouse genome. TGCE detects the presence of heteroduplex molecules formed between a wild-type gene segment and the corresponding homologous segment containing an induced mutation or a naturally occurring single nucleotide polymorphism (SNP). Partially denatured heteroduplex molecules are resolved from homoduplexes by virtue of their differential mobilities during capillary electrophoresis conducted in a finely controlled temperature gradient.

View Article and Find Full Text PDF

Increased susceptibility to gastric cancer has been associated with a wide range of host genetic and environmental factors, including Helicobacter pylori infection. Helicobacter pylori infection is postulated to initiate a progression through atrophic gastritis, metaplasia and dysplasia to cancer, and has been associated with reduction of acid output and dysregulation of stomach mucins. Here, we present the characterization of two mouse lines carrying mutant alleles of the gene encoding the Kcnq1 potassium channel, which very rapidly establish chronic gastritis in a pathogen-exposed environment.

View Article and Find Full Text PDF

We have developed a highly versatile platform that performs temperature gradient capillary electrophoresis (TGCE) for mutation/single-nucleotide polymorphism (SNP) detection, sequencing and mutation/SNP genotyping for identification of sequence variants on an automated 24-, 96- or 192-capillary array instrument. In the first mode, multiple DNA samples consisting of homoduplexes and heteroduplexes are separated by CE, during which a temperature gradient is applied that covers all possible temperatures of 50% melting equilibrium (Tms) for the samples. The differences in Tms result in separation of homoduplexes from heteroduplexes, thereby identifying the presence of DNA variants.

View Article and Find Full Text PDF