Publications by authors named "Cydne L Holt"

Forensic Investigative Genetic Genealogy, a recent sub discipline of forensic genomics, leverages the high throughput and sensitivity of detection of next generation sequencing and established genetic and genealogical approaches to support the identification of human remains from missing persons investigations and investigative lead generation in violent crimes. To facilitate forensic DNA evidence analysis, the ForenSeq® Kintelligence multiplex, consisting of 10,230 SNPs, was developed. Design of the ForenSeq Kintelligence Kit, the MiSeq FGx® Sequencing System and the ForenSeq Universal Analysis Software is described.

View Article and Find Full Text PDF

For human identification purposes, forensic genetics has primarily relied upon a core set of autosomal (and to a lesser extent Y chromosome) short tandem repeat (STR) markers that are enriched by amplification using the polymerase chain reaction (PCR) that are subsequently separated and detected using capillary electrophoresis (CE). While STR typing conducted in this manner is well-developed and robust, advances in molecular biology that have occurred over the last 15 years, in particular massively parallel sequencing (MPS) [1-7], offer certain advantages as compared to CE-based typing. First and foremost is the high throughput capacity of MPS.

View Article and Find Full Text PDF

Forensic mitochondrial DNA (mtDNA) analysis conducted using next-generation sequencing (NGS), also known as massively parallel sequencing (MPS), as compared to Sanger-type sequencing brings modern advantages, such as deep coverage per base (herein referred to as read depth per base pair (bp)), simultaneous sequencing of multiple samples (libraries) and increased operational efficiencies. This report describes the design and developmental validation, according to forensic quality assurance standards, of end-to-end workflows for two multiplexes, comprised of ForenSeq mtDNA control region and mtDNA whole-genome kits the MiSeq FGx instrument and ForenSeq universal analysis software (UAS) 2.0/2.

View Article and Find Full Text PDF

Human dental remains encountered in criminal casework evidence, missing person cases, or mass disaster tragedies provide a valuable sample source for DNA typing when suitable soft tissue is unavailable. Using traditional methods, teeth samples can be challenging to process, resulting in low-quantity and/or quality nuclear DNA and insufficient profiles for comparisons. This study examines the performance of a three-part nuclear DNA analysis workflow for teeth samples based on (1) improved dental tissue recovery using the Dental Forensic Kit (DFK) (Universidad de los Andes) and DNA extraction with QuickExtract™ FFPE DNA Extraction Kit (Lucigen®), (2) quantification with InnoQuant® HY (InnoGenomics Technologies) for sensitive assessment of total human and male DNA quantity/quality, and (3) massively parallel sequencing for simultaneous genotyping of 231 short tandem repeat (STR) and single-nucleotide polymorphism (SNP) markers with the ForenSeq® DNA Signature Prep Kit (Verogen, Inc.

View Article and Find Full Text PDF

Human DNA profiling using PCR at polymorphic short tandem repeat (STR) loci followed by capillary electrophoresis (CE) size separation and length-based allele typing has been the standard in the forensic community for over 20 years. Over the last decade, Next-Generation Sequencing (NGS) matured rapidly, bringing modern advantages to forensic DNA analysis. The MiSeq FGx™ Forensic Genomics System, comprised of the ForenSeq™ DNA Signature Prep Kit, MiSeq FGx™ Reagent Kit, MiSeq FGx™ instrument and ForenSeq™ Universal Analysis Software, uses PCR to simultaneously amplify up to 231 forensic loci in a single multiplex reaction.

View Article and Find Full Text PDF

Laboratory procedures used in short tandem repeat (STR) analysis were subjected to various scenarios that assessed reliability and identified potential limitations. These validation studies were designed as recommended by the Technical Working Group on DNA Analysis Methods (TWGDAM) and the DNA Advisory Board (DAB) (17,18). Various DNA samples were amplified by the polymerase chain reaction (PCR) using AmpFlSTR PCR Amplification Kits (i.

View Article and Find Full Text PDF

Analysis of length polymorphisms at STR loci in the human genome has become a standard approach for comparative genotyping in many areas including disease research and diagnostics, parentage assessment, investigations of human diversity, and forensic science. The simultaneous analysis of multiple STR loci through multiplex PCR and multicolor fluorescence detection offers sample conservation, high throughput, and automated genetic analysis. Careful design and optimization of tetranucleotide STR multiplexes has led to reliable, standardized systems that powerfully differentiate and distinguish individual human DNA profiles.

View Article and Find Full Text PDF