Cancer stem cells (CSCs) contribute to disease progression and treatment failure in human cancers. The balance among self-renewal, differentiation, and senescence determines the expansion or progressive exhaustion of CSCs. Targeting these processes might lead to novel anticancer therapies.
View Article and Find Full Text PDFBackground: The outcome of patients affected by mantle cell lymphoma (MCL) has improved in recent years, but there is still a need for novel treatment strategies for these patients. Human cancers, including MCL, present recurrent alterations in genes that encode transcription machinery proteins and of proteins involved in regulating chromatin structure, providing the rationale to pharmacologically target epigenetic proteins. The Bromodomain and Extra Terminal domain (BET) family proteins act as transcriptional regulators of key signalling pathways including those sustaining cell viability.
View Article and Find Full Text PDFParkinson's disease (PD) is a neurodegenerative disorder characterized by alpha-synuclein accumulation and loss of dopaminergic neurons in the substantia nigra (SN) region of the brain. Increased levels of alpha-synuclein have been shown to result in loss of mitochondrial electron transport chain complex I activity leading to increased reactive oxygen species (ROS) production. WT alpha-synuclein was stably overexpressed in human BE(2)-M17 neuroblastoma cells resulting in increased levels of an alpha-synuclein multimer, but no increase in alpha-synuclein monomer levels.
View Article and Find Full Text PDFTriple-negative breast cancer (TNBC) is an aggressive and heterogeneous subgroup of breast tumors clinically defined by the lack of estrogen, progesterone and HER2 receptors, limiting the use of the targeted therapies employed in other breast malignancies. Recent evidence indicates that c-MYC is a key driver of TNBC. The BET-bromodomain inhibitor OTX015 (MK-8628) has potent antiproliferative activity accompanied by c-MYC down-regulation in several tumor types, and has demonstrated synergism with the mTOR inhibitor everolimus in different models.
View Article and Find Full Text PDFInhibitors targeting epigenetic control points of oncogenes offer a potential mean of blocking tumor progression in small cell and non-small cell lung carcinomas (SCLC, NSCLC). OTX015 (MK-8628) is a BET inhibitor selectively blocking BRD2/3/4. OTX015 was evaluated in a panel of NSCLC or SCLC models harboring different oncogenic mutations.
View Article and Find Full Text PDFAnaplastic large cell lymphomas (ALCL) represent a peripheral T-cell lymphoma subgroup, stratified based on the presence or absence of anaplastic lymphoma kinase (ALK) chimeras. Although ALK-positive ALCLs have a more favorable outcome than ALK-negative ALCL, refractory and/or relapsed forms are common and novel treatments are needed. Here we investigated the therapeutic potential of a novel bromodomain inhibitor, OTX015/MK-8628 in ALK-positive ALCLs.
View Article and Find Full Text PDFIt has recently been reported that a large proportion of human malignant pleural mesothelioma (MPM) cell lines and patient tissue samples present high expression of the c-MYC oncogene. This gene drives several tumorigenic processes and is overexpressed in many cancers. Although c-MYC is a strategic target to restrain cancer processes, no drugs acting as c-MYC inhibitors are available.
View Article and Find Full Text PDFThe bromodomain inhibitor OTX015 (MK-8628) has shown anti-lymphoma activity as a single agent in both the preclinical and clinical settings, as well as in vitro synergism with several anticancer agents. Here, we report in vivo data for OTX015 in combination with the histone deacetylase inhibitor vorinostat, the Bruton's tyrosine kinase inhibitor ibrutinib, the anti-CD20 monoclonal antibody rituximab, and the mTOR inhibitor everolimus in a diffuse large B cell lymphoma model. The antitumor effect of OTX015-containing combinations in SU-DHL-2 xenografts in mice was much stronger than the activity of the corresponding single agents with almost complete tumor eradication for all four combinations.
View Article and Find Full Text PDFBromodomain and extraterminal (BET) bromodomain (BRD) proteins are epigenetic readers that bind to acetylated lysine residues on chromatin, acting as co-activators or co-repressors of gene expression. BRD2 and BRD4, members of the BET family, are significantly increased in glioblastoma multiforme (GBM), the most common primary adult brain cancer. OTX015 (MK-8628), a novel BRD2/3/4 inhibitor, is under evaluation in dose-finding studies in solid tumors, including GBM.
View Article and Find Full Text PDFPurpose: Targeting BET proteins was previously shown to have specific antitumoral efficacy against MYCN-amplified neuroblastoma. We here assess the therapeutic efficacy of the BET inhibitor, OTX015, in preclinical neuroblastoma models and extend the knowledge on the role of BRD4 in MYCN-driven neuroblastoma.
Experimental Design: The efficacy of OTX015 was assessed in in vitro and in vivo models of human and murine MYCN-driven neuroblastoma.
Background And Objectives: OTX015 (MK-8628) is a novel inhibitor of the bromodomain and extraterminal (BET)-bromodomain (BRD) protein family, binding specifically to bromodomains BRD2/3/4 and impacting the epigenetic regulation of several oncogenes. We characterized the pharmacokinetics of this first-in-class BET-BRD inhibitor administered as a single agent, including population pharmacokinetic modelling.
Methods: A dose-escalation, phase Ib study was performed with oral OTX015 in patients with haematologic malignancies, at doses starting from 10 mg once daily (QD) with continuous or discontinuous schedules.
Purpose: In cancer cells, the epigenome is often deregulated, and inhibition of the bromodomain and extra-terminal (BET) family of bromodomain-containing proteins is a novel epigenetic therapeutic approach. Preliminary results of an ongoing phase I trial have reported promising activity and tolerability with the new BET bromodomain inhibitor OTX015.
Experimental Design: We assessed the preclinical activity of OTX015 as single agent and in combination in mature B-cell lymphoma models and performed in vitro and in vivo experiments to identify the mechanism of action and the genetic features associated with sensitivity to the compound.
Degradation of extracellular matrix components is a key step in tumor progression, facilitating invasion, angiogenesis, and metastasis. The lysosomal cysteine protease cathepsin S (Cat-S) is a prominent player in this process. We evaluated the antitumor activity of Fsn0503h, the first Cat-S-antagonistic humanized monoclonal antibody, in a panel of cancer cell lines and in human colon carcinoma xenografts.
View Article and Find Full Text PDFBackground: Galectin-1 (Gal1), a carbohydrate-binding protein is implicated in cancer cell proliferation, invasion and tumour angiogenesis. Several Gal1-targeting compounds have recently emerged. OTX008 is a calixarene derivative designed to bind the Gal1 amphipathic β-sheet conformation.
View Article and Find Full Text PDFPurpose: OTX008 is a galectin-1-targeting compound, currently undergoing a phase I clinical trial. This study aimed at investigating OTX008 pharmacokinetics (PK) and antineoplastic activity.
Methods: Pharmacokinetics and activity of OTX008 were analyzed in the human ovarian carcinoma A2780-1A9 and glioblastoma U87MG xenografted in nude mice.
Pyriplatin, cis-diammine(pyridine)chloroplatinum(II), a platinum-based antitumor drug candidate, is a cationic compound with anticancer properties in mice and is a substrate for organic cation transporters that facilitate oxaliplatin uptake. Unlike cisplatin and oxaliplatin, which form DNA cross-links, pyriplatin binds DNA in a monofunctional manner. The antiproliferative effects of pyriplatin, alone and in combination with known anticancer drugs (paclitaxel, gemcitabine, SN38, cisplatin, and 5-fluorouracil), were evaluated in a panel of epithelial cancer cell lines, with direct comparison to cisplatin and oxaliplatin.
View Article and Find Full Text PDFBackground: Pralatrexate is a dihydrofolate reductase (DHFR) inhibitor with high affinity for reduced folate carrier 1 (RFC-1) and folylpolyglutamate synthetase (FPGS), resulting in extensive internalization and accumulation in tumour cells. Pralatrexate is approved in the US for the treatment of relapsed or refractory peripheral T-cell lymphoma and is being investigated in various malignancies. Here, we evaluated molecular correlates of sensitivity to pralatrexate and explored combinations with a variety of anticancer agents.
View Article and Find Full Text PDFAdv Drug Deliv Rev
November 2009
ProLindac (AP5346) is DACH (diaminocyclohexane) platinum polymer prodrug currently in phase II clinical development. It uses a 25 kDa polymer delivery vehicle based on hydroxypropylmethacrylamide (HPMA) to target the active form of the approved drug oxaliplatin to tumors. The pH-sensitive linker that binds platinum to the polymer releases platinum more rapidly in low pH environments, as found typically in many tumors.
View Article and Find Full Text PDFAcquired resistance to protein kinase C (PKC) modulators may explain the failure of clinical trials in patients with cancer. Herein, we established a human colon cancer cell line resistant to PEP005, a drug that inhibits PKCalpha and activates PKCdelta. Colo205-R cells, selected by stepwise exposure to PEP005, were >300-fold more resistant to PEP005 than parental Colo205-S cells and were cross-resistant to phorbol 12-myristate 13-acetate, bryostatin, bistratene A, and staurosporine.
View Article and Find Full Text PDFPEP005 is a novel ingenol angelate that modulates protein kinases C (PKC) functions by activating PKC delta and inhibiting PKC alpha. This study assessed the antiproliferative effects of PEP005 alone and in combination with several other anticancer agents in a panel of 10 human cancer cell lines characterised for expression of several PKC isoforms. PEP005 displayed antiproliferative effects at clinically relevant concentrations with a unique cytotoxicity profile that differs from that of most other investigated cytotoxic agents, including staurosporine.
View Article and Find Full Text PDFPEP005 (ingenol-3-angelate) is a novel anticancer agent extracted from Euphorbia peplus that was previously shown to modulate protein kinase C (PKC), resulting in antiproliferative and proapoptotic effects in several human cancer cell lines. In Colo205 colon cancer cells, exposure to PEP005 induced a time- and concentration-dependent decrease of cells in S phase of cell cycle and apoptosis. In Colo205 cells exposed to PEP005, a variety of signaling pathways were activated as shown by increased phosphorylation of PKCdelta, Raf1, extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase (MAPK), c-Jun NH(2)-terminal kinase, p38 MAPK, and PTEN.
View Article and Find Full Text PDFThis study assessed the antiproliferative activity of sapacitabine (CYC682, CS-682) in a panel of 10 human cancer cell lines with varying degrees of resistance or sensitivity to the commonly used nucleoside analogues ara-C and gemcitabine. Growth inhibition studies using sapacitabine and CNDAC were performed in the panel of cell lines and compared with both nucleoside analogues and other anticancer compounds including oxaliplatin, doxorubicin, docetaxel and seliciclib. Sapacitabine displayed antiproliferative activity across a range of concentrations in a variety of cell lines, including those shown to be resistant to several anticancer drugs.
View Article and Find Full Text PDFPurpose: To determine the maximum tolerated dose (MTD), recommended dose, dose limiting toxicities (DLT), safety and pharmacokinetics of irofulven combined with capecitabine in advanced solid tumor patients.
Experimental Design: Irofulven was given i.v.
The aim of this phase II study was to evaluate safety and efficacy of an oxaliplatin/vinorelbine/5-fluorouracil (FON) combination in anthracycline and taxane-pretreated metastatic breast cancer patients. The following treatment was given: on day 1 of a 21-day cycle, oxaliplatin 130 mg/m (2-h intravenous infusion); on days 1 and 5, vinorelbine [dose level (DL) 1: 17.5 mg/m; DL2: 22 mg/m]; on days 1-5, continuous infusion 5-fluorouracil (DL1: 600 mg/m/day; DL2: 750 mg/m/day).
View Article and Find Full Text PDF