Publications by authors named "Cvetan Stojkoski"

Granulocyte/macrophage colony-stimulating factor promotes growth, survival, differentiation, and activation of normal myeloid cells and plays an important role in myeloid leukemias. The GM-CSF receptor (GMR) shares a signaling subunit, beta(c), with interleukin-3 and interleukin-5 receptors and has recently been shown to induce activation of Janus kinase 2 (JAK2) and downstream signaling via formation of a unique dodecameric receptor complex. In this study we use 2 activated beta(c) mutants that display distinct signaling capacity and have differential requirements for the GMR alpha-subunit (GMR-alpha) to dissect the signaling pathways associated with the GM-CSF response.

View Article and Find Full Text PDF

Src signalling and transduction are directly involved in cell growth, cell cycle, malignant transformation and cell migration, providing therapeutic opportunities through inhibition of Src. Here we report virtual screening for novel compounds that inhibit the Src-SH3 protein-protein interaction with a proline-rich peptide ligand. Computational docking of the ZINC compound database was performed using GOLD.

View Article and Find Full Text PDF

The native form of pyruvate carboxylase is an alpha4 tetramer but the tetramerisation domain of each subunit is currently unknown. To identify this domain we co-expressed yeast pyruvate carboxylase 1 isozyme (Pyc1) with an N-terminal myc tag, together with constructs encoding either the biotin carboxylase (BC) domain or the transcarboxylase-biotin carboxyl carrier domain (TC-BCC), each with an N-terminal 9-histidine tag. From tag-affinity chromatography experiments, the subunit contacts within the tetramer were identified to be primarily located in the 55 kDa BC domain.

View Article and Find Full Text PDF

The Src homology 3 (SH3) domains are small protein-protein interaction domains that mediate a range of important biological processes and are considered valuable targets for the development of therapeutic agents. We have been developing 2-aminoquinolines as ligands for SH3 domains--so far the only reported examples of entirely small-molecule ligands for the SH3 domains. The highest affinity 2-aminoquinolines so far identified are 6-substituted compounds.

View Article and Find Full Text PDF

The Src Homology 3 (SH3) domains are small protein-protein interaction domains that bind proline-rich sequences and mediate a wide range of cell-signaling and other important biological processes. Since deregulated signaling pathways form the basis of many human diseases, the SH3 domains have been attractive targets for novel therapeutics. High-affinity ligands for SH3 domains have been designed; however, these have all been peptide-based and no examples of entirely nonpeptide SH3 ligands have previously been reported.

View Article and Find Full Text PDF

The hypoxia-inducible factor alpha subunits 1 and 2 (HIF-1alpha and HIF-2alpha) are subjected to oxygen-dependent asparaginyl hydroxylation, a modification that represses the carboxyl-terminal transactivation domain (CAD) at normoxia by preventing recruitment of the p300/cAMP-response element-binding protein coactivators. This hydroxylation is performed by the novel asparaginyl hydroxylase, factor-inhibiting HIF-1' (FIH-1), of which HIF-1alpha and HIF-2alpha are the only reported substrates. Here we investigated the substrate requirements of FIH-1 by characterizing its subcellular localization and by examining amino acids within the HIF-1alpha substrate for their importance in recognition and catalysis by FIH-1.

View Article and Find Full Text PDF