Publications by authors named "Cvelbar U"

The production, conversion and storage of energy based on electrocatalysis, mainly assisted by oxygen evolution reaction (OER), plays a crucial role in alkaline water electrolyzers (AWEs) and fuel cells. Nevertheless, the insufficient availability of highly efficient catalyst materials at a reasonable cost that overcome the sluggish electrochemical kinetics of the OER is one of the significant obstacles. Herein, we report a fast and facile synthesis of vapor phase deposition of dual-phase nickel sulfide (Ni-sulfide) using low-temperature annealing in the presence of HS and demonstrated as an efficient catalyst for OER to address the issues with sluggish electrochemical kinetics.

View Article and Find Full Text PDF

Nanogold is an emerging material for enhancing surface-enhanced Raman scattering (SERS), which enables the detection of hazardous analytes at trace levels. This study presents a simple, single-step plasma synthesis method to control the size and yield of Au nanoparticles by using plasma-liquid redox chemistry. The pin-based argon plasma reduces the Au precursor in under 5 min, synthesizing Au spherical particles ranging from ∼20 nm at 0.

View Article and Find Full Text PDF

Cellulose nanofibrils are one of the keystone materials for sustainable future, yet their poor water repellency hinders their push into industrial applications. Due to complexity and poor economical outcome and/or processing toxicity of the existing hydrophobization methods, nanocellulose loses against its antagonist plastic in medical and food industries. Herein, we demonstrate for the first time the "one-side selective water-repellency activation" in nanocellulose membranes by the means of mild N-plasma treatment, exhibiting lowest wettability after 20 s of treatment.

View Article and Find Full Text PDF

The accurate and rapid identification of explosives and their toxic by-products is an important aspect of safety protocols, forensic investigations and pollution studies. Herein, surface-enhanced Raman scattering (SERS) is used to detect different explosive molecules using an improved substrate design by controllable oxidation of the tungsten surface and deposition of Au layers. The resulting furrow-like morphology formed at the intersection of the tungsten Wulff facets increases nanoroughness and improves the SERS response by over 300 % compared to the untreated surface.

View Article and Find Full Text PDF

Materials with tunable negative electromagnetic performance, i.e., where dielectric permittivity becomes negative, have long been pursued in materials research due to their peculiar electromagnetic (EM) characteristics.

View Article and Find Full Text PDF

Hydrogen separation using nanostructured membranes has gained research attention because of its potential to produce high-purity hydrogen by separating gases at the molecular level. Quadrupole mass spectrometry (QMS) is one method to evaluate these membranes' effectiveness in separating hydrogen from gas mixtures. However, quantifying gases in a mixture with QMS is challenging, especially when heavier gas ions interfere with a light gas ion, resulting in lower quantification accuracy.

View Article and Find Full Text PDF

Bisphenols are widely recognised as toxic compounds that potentially threaten the environment and public health. Here we report the use of cold atmospheric pressure plasma (CAP) to remove bisphenol A (BPA) and bisphenol S (BPS) from aqueous systems. Additionally, methanol was added as a radical scavenger to simulate environmental conditions.

View Article and Find Full Text PDF

Textiles are important components for the development of lightweight and flexible displays useful in smart materials. In particular, halochromic textiles are fibrous materials with a color-changing ability triggered by pH variations mainly based on pH-sensitive dye molecules. Recently, a novel class of 2-aminoimidazole azo dyes was developed with distinct substituent patterns.

View Article and Find Full Text PDF

Low-dimensional copper oxide nanostructures are very promising building blocks for various functional materials targeting high-demanded applications, including energy harvesting and transformation systems, sensing and catalysis. Featuring a very high surface-to-volume ratio and high chemical reactivity, these materials have attracted wide interest from researchers. Currently, extensive research on the fabrication and applications of copper oxide nanostructures ensures the fast progression of this technology.

View Article and Find Full Text PDF

Unwelcomed biofilms are problematic in food industries, surgical devices, marine applications, and wastewater treatment plants, essentially everywhere where there is moisture. Very recently, label-free advanced sensors such as localized and extended surface plasmon resonance (SPR) have been explored as tools for monitoring biofilm formation. However, conventional noble metal SPR substrates suffer from low penetration depth (100-300 nm) into the dielectric medium above the surface, preventing the reliable detection of large entities of single or multi-layered cell assemblies like biofilms which can grow up to a few micrometers or more.

View Article and Find Full Text PDF

Polyester (PET) fabrics are widely applied in functional textiles due to their outstanding properties such as high strength, dimensional stability, high melting point, low cost, recyclability, and flexibility. Nevertheless, the lack of polar groups in the PET structure makes its coloration and functionalization difficult. The present work reports the one-step in situ synthesis of copper nanoparticles (CuNPs) onto the PET fabric employing sodium hypophosphate and ascorbic acid as reducing and stabilizing agents, at acidic (pH 2) and alkaline pH (pH 11).

View Article and Find Full Text PDF

The optoelectronic properties of transition metal oxide semiconductors depend on their oxygen vacancies, nanostructures and aggregation states. Here, we report the synthesis and photoluminescence (PL) properties of substoichiometric tungsten oxide (WO) aggregates with the nanorods, nanoflakes, submicro-spherical-like, submicro-spherical and micro-spherical structures in the acetic acid solution without and with the special surfactants (butyric or oleic acids). Based on theory on the osmotic potential of polymers, we demonstrate the structural change of the WO aggregates, which is related to the change of steric repulsion caused by the surfactant layers, adsorption and deformation of the surfactant molecules on the WO nanocrystals.

View Article and Find Full Text PDF

It is shown that surface-enhanced Raman spectroscopy (SERS) can identify bacteria based on their genomic DNA composition, acting as a "sample-distinguishing marker". Successful spectral differentiation of bacterial species was accomplished with nanogold aggregates synthesized through single-step plasma reduction of the ionic gold-containing vapored precursor. A high enhancement factor (EF = 10) in truncated coupled plasmonic particulates allowed SERS-probing at nanogram sample quantities.

View Article and Find Full Text PDF

Atmospheric mercury measurements carried out in the recent decades have been a subject of bias largely due to insufficient consideration of metrological traceability and associated measurement uncertainty, which are ultimately needed for the demonstration of comparability of the measurement results. This is particularly challenging for gaseous Hg species, which are reactive and their ambient concentrations are very low, causing difficulties in proper sampling and calibration. Calibration for atmospheric Hg exists, but barriers to reliable calibration are most evident at ambient Hg concentration levels.

View Article and Find Full Text PDF

Developing novel, fast and efficient ecologically benign processes for removing organic contaminants is important for the continued development of water treatment. For this reason, this study investigates the implementation of Cold Atmospheric pressure Plasma (CAP) generated in ambient air as an efficient tool for the removal of Bisphenol A (BPA) and Bisphenol S (BPS)-known endocrine disrupting compounds in water and wastewater, by monitoring degradation kinetics and its transformation products. The highest removal efficiencies of BPA (>98%) and BPS (>70%) were obtained after 480 s of CAP exposure.

View Article and Find Full Text PDF

The possible benefits of an atmospheric pressure plasma jet skin treatment have been tested in vivo on mouse skin. Many studies have been conducted in vitro on mouse skin cells, but only a few in vivo where, due to the complexity of the biological system, plasma can cause severe damages. For this reason, we investigated how kHz plasma generated in a jet that is known to inflict skin damage interacts with mouse skin and explored how we can reduce the skin damage.

View Article and Find Full Text PDF

Antimicrobial textiles are helpful tools to fight against multidrug-resistant pathogens and nosocomial infections. The deposition of silver nanoparticles (AgNPs) onto textiles has been studied to achieve antimicrobial properties. Yet, due to health and environmental safety concerns associated with such formulations, processing optimizations have been introduced: biocompatible materials, environmentally friendly agents, and delivery platforms that ensure a controlled release.

View Article and Find Full Text PDF

Manganese-doped ceria nanoparticles were prepared by hydrothermal synthesis and the prepared samples were thermally treated at 500 °C for 2 h. The samples were investigated using x-ray diffraction (XRD), high-resolution transmission electron microscopy (HR-TEM), energy-dispersive x-ray spectroscopy (EDS), Nadsorption and x-ray photoelectron spectroscopy (XPS). XRD revealed that nanocrystalline ceria is the main phase in all samples, while a romanechite-like phase (NaMnO) appears in the sample doped with 30% of Mn.

View Article and Find Full Text PDF

Mycotoxins are widespread chemical entities in the agriculture and food industries that can induce cancer growth and immune deficiency, posing a serious health threat for humankind. These hazardous compounds are produced naturally by various molds (fungi) that contaminate different food products and can be detected in cereals, nuts, spices, and other food products. However, their detection, especially at minimally harmful concentrations, remains a serious analytical challenge.

View Article and Find Full Text PDF

The antibacterial and cell-proliferative character of atmospheric pressure plasma jets (APPJs) helps in the healing process of chronic wounds. However, control of the plasma-biological target interface remains an open issue. High vacuum ultraviolet/ultraviolet (VUV/UV) radiation and RONS flux from plasma may cause damage of a treated tissue; therefore, controlled interaction is essential.

View Article and Find Full Text PDF

Atmospheric pressure plasma jets have been shown to impact several cancer cell lines, both in vitro and in vivo. These effects are based on the biochemistry of the reactive oxygen and nitrogen species generated by plasmas in physiological liquids, referred to as plasma-conditioned liquids. Plasma-conditioned media are efficient in the generation of reactive species, inducing selective cancer cell death.

View Article and Find Full Text PDF

Transition-metal sulfides combined with conductive carbon nanostructures are considered promising electrode materials for redox-based supercapacitors due to their high specific capacity. However, the low rate capability of these electrodes, still considered "battery-type" electrodes, presents an obstacle for general use. In this work, we demonstrate a successful and fast fabrication process of metal sulfide-carbon nanostructures ideal for charge-storage electrodes with ultra-high capacity and outstanding rate capability.

View Article and Find Full Text PDF

Impinging gas jets can induce depressions in liquid surfaces, a phenomenon familiar to anyone who has observed the cavity produced by blowing air through a straw directly above a cup of juice. A dimple-like stable cavity on a liquid surface forms owing to the balance of forces among the gas jet impingement, gravity and surface tension. With increasing gas jet speed, the cavity becomes unstable and shows oscillatory motion, bubbling (Rayleigh instability) and splashing (Kelvin-Helmholtz instability).

View Article and Find Full Text PDF