SETD2, a lysine -methyltransferase, is a histone methyltransferase that plays an important role in various cellular processes and was identified as a target of interest in multiple myeloma that features a t(4,14) translocation. We recently reported the discovery of a novel small-molecule SETD2 inhibitor tool compound that is suitable for preclinical studies. Herein we describe the conformational-design-driven evolution of the advanced chemistry lead, which resulted in compounds appropriate for clinical evaluation.
View Article and Find Full Text PDFSET domain-containing protein 2 (SETD2), a histone methyltransferase, has been identified as a target of interest in certain hematological malignancies, including multiple myeloma. This account details the discovery of , a novel and potent SETD2 inhibitor with a high selectivity over other histone methyltransferases. A screening campaign of the Epizyme proprietary histone methyltransferase-biased library identified potential leads based on a 2-amidoindole core.
View Article and Find Full Text PDFThe recent approval of aducanumab for Alzheimer's disease has heightened the interest in therapies targeting the amyloid hypothesis. Our research has focused on identification of novel compounds to improve amyloid processing by modulating gamma secretase activity, thereby addressing a significant biological deficit known to plague the familial form of the disease. Herein, we describe the design, synthesis, and optimization of new gamma secretase modulators (GSMs) based on previously reported oxadiazine .
View Article and Find Full Text PDFInhibition of O-GlcNAcase (OGA) has emerged as a promising therapeutic approach to treat tau pathology in neurodegenerative diseases such as Alzheimer's disease and progressive supranuclear palsy. Beginning with carbohydrate-based lead molecules, we pursued an optimization strategy of reducing polar surface area to align the desired drug-like properties of potency, selectivity, high central nervous system (CNS) exposure, metabolic stability, favorable pharmacokinetics, and robust in vivo pharmacodynamic response. Herein, we describe the medicinal chemistry and pharmacological studies that led to the identification of (3a,5,6,7,7a)-5-(difluoromethyl)-2-(ethylamino)-3a,6,7,7a-tetrahydro-5-pyrano[3,2-]thiazole-6,7-diol (MK-8719), a highly potent and selective OGA inhibitor with excellent CNS penetration that has been advanced to first-in-human phase I clinical trials.
View Article and Find Full Text PDFA key challenge in the development of precision medicine is defining the phenotypic consequences of pharmacological modulation of specific target macromolecules. To address this issue, a variety of genetic, molecular and chemical tools can be used. All of these approaches can produce misleading results if the specificity of the tools is not well understood and the proper controls are not performed.
View Article and Find Full Text PDFA second-generation small molecule P2X3 receptor antagonist has been developed. The lead optimization strategy to address shortcomings of the first-generation preclinical lead compound is described herein. These studies were directed towards the identification and amelioration of preclinical hepatobiliary findings, reducing potential for drug-drug interactions, and decreasing the projected human dose of the first-generation lead.
View Article and Find Full Text PDFHerein we describe the design, synthesis, and evaluation of a novel series of oxadiazine-based gamma secretase modulators obtained via isosteric amide replacement and critical consideration of conformational restriction. Oxadiazine lead 47 possesses good in vitro potency with excellent predicted CNS drug-like properties and desirable ADME/PK profile. This lead compound demonstrated robust Aβ reductions and subsequent Aβ increases in both rodent brain and CSF at 30 mg/kg dosed orally.
View Article and Find Full Text PDFBackground: Familial Alzheimer's disease (FAD) is caused by mutations in the amyloid precursor protein (APP) or presenilin (PS). Most PS mutations, which account for the majority of FAD cases, lead to an increased ratio of longer to shorter forms of the amyloid beta (Aβ) peptide. The therapeutic rationale of γ-secretase modulators (GSMs) for Alzheimer's disease is based on this genetic evidence as well as on enzyme kinetics measurements showing changes in the processivity of the γ-secretase complex.
View Article and Find Full Text PDFBackground: Three quinuclidine derivatives (FRM-1, FRM-2 and FRM-3) were subject to significant mass loss to cellular retention in Caco-2 permeation experiments. The apparent permeability coefficient (Papp) calculated with either 'sink' (Papp,sink) or 'non-sink' (Papp,nonsink) method was significantly biased. As a result, a simplified 3-compartmental distribution model was applied in this study to derive the 'intrinsic' Papp (Papp,int) and to understand the impact of cellular retention on estimating Papp and active efflux ratio (ER) values.
View Article and Find Full Text PDFInvestigation of a novel amino-aza-benzimidazolone structural class of positive allosteric modulators (PAMs) of metabotropic glutamate receptor 2 (mGluR2) identified [2.2.2]-bicyclic amine 12 as an intriguing lead structure due to its promising physicochemical properties and lipophilic ligand efficiency (LLE).
View Article and Find Full Text PDFOptimization of a benzimidazolone template for potency and physical properties revealed 5-aryl-1,3-dihydro-2H-imidazo[4,5-b]pyridin-2-ones as a key template on which to develop a new series of mGlu2 positive allosteric modulators (PAMs). Systematic investigation of aryl-SAR led to the identification of compound 27 as a potent and highly selective mGlu2 PAM with sufficient pharmacokinetics to advance to preclinical models of psychosis. Gratifyingly, compound 27 showed full efficacy in the PCP- and MK-801-induced hyperlocomotion assay in rats at CSF concentrations consistent with mGlu2 PAM potency.
View Article and Find Full Text PDFPharmacological activation of α7 nicotinic acetylcholine receptors (α7 nAChRs) may improve cognition in schizophrenia and Alzheimer's disease. The present studies describe an integrated pharmacological analysis of the effects of FRM-17874, an analogue of encenicline, on α7 nAChRs in vitro and in behavioral and neurophysiological assays relevant to cognitive function. FRM-17874 demonstrated high affinity binding to human α7 nAChRs, displacing [(3)H]-methyllacaconitine (Ki=4.
View Article and Find Full Text PDFDrug-drug interactions (DDIs) related to altered drug absorption and plasma protein binding have received much less attention from regulatory agencies relative to DDIs mediated via drug metabolizing enzymes and transporters. In this review, a number of theoretical bases and regulatory framework are presented for these DDI aspects. Also presented is an industry perspective on how to approach these issues in support of drug development.
View Article and Find Full Text PDFTwo investigational compounds (FRM-1, (R)-7-fluoro-N-(quinuclidin-3-yl)benzo[b]thiophene-2-carboxamide and FRM-2, (R)-7-cyano-N-(quinuclidin-3-yl)benzo[b]thiophene-2-carboxamide) resided in rat brain longer than in systemic circulation. In Caco-2 directional transport studies, they both showed good intrinsic passive permeability but differed significantly in efflux susceptibility (efflux ratio of <2 and ∼7, respectively), largely attributed to P-glycoprotein (P-gp). Capitalizing on these interesting properties, we investigated how cerebrospinal fluid (CSF) concentration (CCSF) would be shaped by unbound plasma concentration (Cu,p) and unbound brain concentration (Cu,b) in disequilibrium conditions and at steady state.
View Article and Find Full Text PDFWe evaluated the effect of prednisone on midazolam and odanacatib pharmacokinetics. In this open-label, 2-period crossover study in healthy male subjects, midazolam 2 mg was administered (Day -1) followed by odanacatib 50 mg (Day 1) during Part 1. In Period 2, prednisone 10 mg once daily (qd) was administered on Days 1-28; odanacatib was co-administered on Day 14 and midazolam 2 mg was co-administered on Days 1 and 28.
View Article and Find Full Text PDFThe orexin (or hypocretin) system has been identified as a novel target for the treatment of insomnia due to the wealth of biological and genetic data discovered over the past decade. Recently, clinical proof-of-concept was achieved for the treatment of primary insomnia using dual (OX1R/OX2R) orexin receptor antagonists. However, elucidation of the pharmacology associated with selective orexin-2 receptor antagonists (2-SORAs) has been hampered by the lack of orally bioavailable, highly selective small molecule probes.
View Article and Find Full Text PDFProtein phosphorylation and O-GlcNAcylation are reciprocally regulated. As hyperphosphorylation is implicated in tau pathology, approaches have been exploited to reduce the magnitude of tau phosphorylation by increasing the level of tau O-GlcNAcylation. With mathematic models constructed to describe different kinetic scenarios, we analyzed the temporal change of an O-GlcNAcylated protein in contrast to that of the phosphorylated form upon inhibition of O-GlcNAcase (OGA).
View Article and Find Full Text PDFThe inhibitory effect of boceprevir (BOC), an inhibitor of hepatitis C virus nonstructural protein 3 protease was evaluated in vitro against a panel of drug-metabolizing enzymes and transporters. BOC, a known substrate for cytochrome P450 (P450) CYP3A and aldo-ketoreductases, was a reversible time-dependent inhibitor (k(inact) = 0.12 minute(-1), K(I) = 6.
View Article and Find Full Text PDFThorough characterization and in-depth understanding of absorption, distribution, metabolism, and elimination (ADME) properties of a drug candidate have been well recognized as an important element in small molecule (SM) drug discovery and development. This has been the area of focus for drug metabolism and pharmacokinetics (DMPK) scientists, whose role has been evolving over the past few decades from primarily being involved in the development space after a preclinical candidate was selected to extending their involvement into the discovery stage prior to candidate selection. This paradigm shift has ensured the entry into development of the best candidates with optimal ADME properties, and thus has greatly impacted SM drug development through significant reduction of the failure rate for pharmacokinetics related reasons.
View Article and Find Full Text PDFPurpose: To systemically investigate, for a therapeutic protein with a circulating soluble target, how the interplay of target dynamics and drug pharmacokinetics defines the 'total' and 'free' drug and target temporal profiles.
Method: By extending the established rapid-binding target-mediated drug disposition (TMDD) pharmacokinetic model to circulating soluble targets, the temporal profiles of 'total' and 'free' drug and target were simulated with varying binding affinity (K(D)), target baseline (R(ss)), target turnover, and drug dose level. Two sets of published experimental data were compared with the simulated results.
A novel series of amide T-type calcium channel antagonists were prepared and evaluated using in vitro and in vivo assays. Optimization of the screening hit 3 led to identification of the potent and selective T-type antagonist 37 that displayed in vivo efficacy in rodent models of epilepsy and sleep.
View Article and Find Full Text PDFA novel phenyl acetamide series of short-acting T-type calcium channel antagonists has been identified and evaluated using in vitro and in vivo assays. Heterocycle substitutions of the 4-position of the phenyl acetamides afforded potent and selective antagonists that exhibited desired short plasma half-lives across preclinical species. Lead compound TTA-A8 emerged as a compound with excellent in vivo efficacy as indicated by its significant modulation of rat sleep architecture in an EEG telemetry model, favorable pharmacokinetic properties, and excellent preclinical safety.
View Article and Find Full Text PDFNovel oxazolobenzimidazoles are described as potent and selective positive allosteric modulators of the metabotropic glutamate receptor 2. The discovery of this class and optimization of its physical and pharmacokinetic properties led to the identification of potent and orally bioavailable compounds (20 and 21) as advanced leads. Compound 20 (TBPCOB) was shown to have robust activity in a PCP-induced hyperlocomotion model in rat, an assay responsive to clinical antipsychotic treatments for schizophrenia.
View Article and Find Full Text PDFBioorg Med Chem Lett
December 2010
A new class of indazole-derived bradykinin B(1) antagonists and their structure-activity relationships (SAR) is reported. A number of compounds were found to have low-nanomolar affinity for the human B(1) receptor and possess acceptable P-gp and pharmacokinetics properties.
View Article and Find Full Text PDFThe discovery and synthesis of 4,4-disubstituted quinazolinones as T-type calcium channel antagonists is reported. Based on lead compounds 2 and 3, a focused SAR campaign driven by the optimization of potency, metabolic stability, and pharmacokinetic profile identified 45 as a potent T-type Ca(2+) channel antagonist with minimized PXR activation. In vivo, 45 suppressed seizure frequency in a rat model of absence epilepsy and showed significant alterations of sleep architecture after oral dosing to rats as measured by EEG.
View Article and Find Full Text PDF