Publications by authors named "Cutler P"

The link between alpha Synuclein (α-Syn) phosphorylation and Parkinson's disease pathogenesis has not been fully elucidated, in part due to analytical methods with finite specificity and sensitivity, resulting in conflicting data on pathophysiological levels of the protein.One factor hindering the assessment of the role of pSer129 α-Syn is the lack of a fit for purpose assay. Antibodies were assessed for quantification of pSer129 α-Syn, resulting in a sensitive and specific assay suitable for use in Parkinson's disease and control CSF, with no significant difference found between the two populations.

View Article and Find Full Text PDF

It is widely acknowledged by the bioanalytical and biomarker community that biomarker assay validations should be fit-for-purpose depending on the context of use. The challenge is how to consistently apply these principles in teams responsible for measuring a disparate array of biomarkers, often on multiple analytical platforms, at various stages of the drug discovery and development pipeline and across diverse biology focus areas. To drive consistency, while maintaining the necessary flexibility to allow validations to be driven by scientific rationale and taking into consideration the context of use and associated biological and (pre)analytical factors, a framework applicable across biomarker assays was developed.

View Article and Find Full Text PDF

Image inversion interferometry can measure the separation of two incoherent point sources at or near the quantum limit. This technique has the potential to improve upon current state-of-the-art imaging technologies, with applications ranging from microbiology to astronomy. However, unavoidable aberrations and imperfections in real systems may prevent inversion interferometry from providing an advantage for real-world applications.

View Article and Find Full Text PDF

Determination of the levels of protein cross-linking catalysed by the activity of transglutaminase 2 in various disease states has remained a significant challenge. The ability to quantify the isopeptide ε-(γ-glutamyl) lysine, which can form as a heterogeneous bond within or between proteins has significant analytical and clinical potential as a biomarker in biofluids such as human urine. Increased transglutaminase 2 activity is associated with a number of diseases, such as fibrosis.

View Article and Find Full Text PDF

The identification of clinically relevant biomarkers represents an important challenge in oncology. This problem can be addressed with biomarker discovery and verification studies performed directly in tumor samples using formalin-fixed paraffin-embedded (FFPE) tissues. However, reliably measuring proteins in FFPE samples remains challenging.

View Article and Find Full Text PDF

Most drugs are administered to children orally. An information gap remains on the protein abundance of small intestinal drug-metabolizing enzymes (DMEs) and drug transporters (DTs) across the pediatric age range, which hinders precision dosing in children. To explore age-related differences in DMEs and DTs, surgical leftover intestinal tissues from pediatric and adult jejunum and ileum were collected and analyzed by targeted quantitative proteomics for apical sodium-bile acid transporter, breast cancer resistance protein (BCRP), monocarboxylate transporter 1 (MCT1), multidrug resistance protein 1 (MDR1), multidrug resistance-associated protein (MRP) 2, MRP3, organic anion-transporting polypeptide 2B1, organic cation transporter 1, peptide transporter 1 (PEPT1), CYP2C19, CYP3A4, CYP3A5, UDP glucuronosyltransferase (UGT) 1A1, UGT1A10, and UGT2B7.

View Article and Find Full Text PDF

The insecticidal effects of ω-hexatoxin-Hv1a, κ-hexatoxin-Hv1c and ω/κ-hexatoxin-Hv1h are currently attributed to action at calcium and potassium channels. By characterizing the binding of these toxins to neuronal membranes, we show that they have more potent effects as positive allosteric modulators (PAMs) of insect nicotinic acetylcholine receptors (nAChRs), consistent with their neuroexcitatory toxicology. Alanine scanning analysis of ω-hexatoxin-Hv1a reveals a structure-activity relationship for binding that mirrors that for insecticidal activity.

View Article and Find Full Text PDF

The search for novel and clinically relevant biomarkers still represents a major clinical challenge and mass-spectrometry-based technologies are essential tools to help in this process. In this application, we demonstrate how selected reaction monitoring (SRM) can be applied in a highly multiplexed way to analyze formalin-fixed paraffin-embedded (FFPE) tissues. Such an assay can be used to analyze numerous samples for narrowing down a list of potential biomarkers to the most relevant candidates.

View Article and Find Full Text PDF

Sunitinib is a tyrosine kinase inhibitor approved for the treatment of multiple solid tumors. However, cardiotoxicity is of increasing concern, with a need to develop rational mechanism driven approaches for the early detection of cardiac dysfunction. We sought to interrogate changes in cardiac energy substrate usage during sunitinib treatment, hypothesising that these changes could represent a strategy for the early detection of cardiotoxicity.

View Article and Find Full Text PDF

The movement of a particle described by Brownian motion is quantified by a single parameter, D, the diffusion constant. The estimation of D from a discrete sequence of noisy observations is a fundamental problem in biological single-particle tracking experiments since it can provide information on the environment and/or the state of the particle itself via the hydrodynamic radius. Here, we present a method to estimate D that takes into account several effects that occur in practice, important for the correct estimation of D, and that have hitherto not been combined together for an estimation of D.

View Article and Find Full Text PDF

Purpose: Rheumatoid arthritis (RA) is associated with increased cardiovascular risk, mediated in part by elevated circulating interleukin-6 levels and proinflammatory changes in plasma lipoproteins. We hypothesized that RA patients acquire inflammation-induced modifications to the protein cargo of circulating lipoproteins that may be reversed by tocilizumab, an interleukin-6 receptor-alpha inhibitor.

Experimental Design: Size-exclusion chromatography and reverse-phase protein arrays using 29 antibodies against 26 proteins were applied at baseline and after tocilizumab treatment to analyze the distributions of apolipoproteins, enzymes, lipid transfer proteins, and other associated proteins in plasma lipoprotein fractions from 20 women with RA.

View Article and Find Full Text PDF

Background: Cardiovascular disease (CVD) is the leading cause of death worldwide and new approaches for both diagnosis and treatment are required. Autoantibodies directed against apolipoprotein A-I (ApoA-I) represent promising biomarkers for use in risk stratification of CVD and may also play a direct role in pathogenesis.

Methodology: To characterize the anti-ApoA-I autoantibody response, we measured the immunoreactivity to engineered peptides corresponding to the different alpha-helical regions of ApoA-I, using plasma from acute chest pain cohort patients known to be positive for anti-ApoA-I autoantibodies.

View Article and Find Full Text PDF

The ability to accurately quantify proteins in formalin-fixed paraffin-embedded tissues using targeted mass spectrometry opens exciting perspectives for biomarker discovery. We have developed and evaluated a selectedreaction monitoring assay for the human receptor tyrosine-protein kinase erbB-2 (HER2) in formalin-fixed paraffin-embedded breast tumors. Peptide candidates were identified using an untargeted mass spectrometry approach in relevant cell lines.

View Article and Find Full Text PDF

Purpose: Cell surface proteins are the primary means for a cell to sense and interact with its environment and their dysregulation has been linked to numerous diseases. In particular, the identification of proteins specific to a single tissue type or to a given disease phenotype may enable the characterization of novel therapeutic targets. We tested here the feasibility of a cell surface proteomics approach to identify pertinent markers directly in a clinically relevant tissue.

View Article and Find Full Text PDF

In the 20 years since its inception, the evolution of proteomics in pharmaceutical industry has mirrored the developments within academia and indeed other industries. From initial enthusiasm and subsequent disappointment in global protein expression profiling, pharma research saw the biggest impact when relating to more focused approaches, such as those exploring the interaction between proteins and drugs. Nowadays, proteomics technologies have been integrated in many areas of pharmaceutical R&D, ranging from the analysis of therapeutic proteins to the monitoring of clinical trials.

View Article and Find Full Text PDF

Purpose: Human pluripotent stem cell (hPSC)-derived cellular models have great potential to enable drug discovery and improve translation of preclinical insights to the clinic. We have developed a hPSC-derived neural precursor cell model for studying early events in human brain development. We present protein-level characterization of this model, using a multiplexed SRM approach, to establish reproducibility and physiological relevance; essential prerequisites for utilization of the neuronal development model in phenotypic screening-based drug discovery.

View Article and Find Full Text PDF

Pharmacokinetics (PK) refers to the time course of drug concentrations in the body and since knowledge of PK aids understanding of drug efficacy and safety, numerous PK studies are performed in animals and humans during the drug development process. In vitro to in vivo extrapolation and physiologically based pharmacokinetic (PBPK) modeling are tools that integrate data from various in silico, in vitro, and in vivo sources to deliver mechanistic quantitative simulations of in vivo PK. PBPK models are used to predict human PK and to evaluate the effects of intrinsic factors such as organ dysfunction, age, and genetics as well as extrinsic factors such as co-administered drugs.

View Article and Find Full Text PDF

Autoimmune diseases, such as antiphospholipid syndrome, systemic lupus erythematosus, and rheumatoid arthritis, are characterized by a high prevalence of cardiovascular (CV) disease (CVD), which constitutes the leading causes of morbidity and mortality among such patients. Although such effects are partly explained by a higher prevalence of traditional CV risk factors, many studies indicate that such factors do not fully explain the enhanced CV risk in these patients. In addition, risk stratification algorithms based upon traditional CV risk factors are not as predictive in autoimmune diseases as in the general population.

View Article and Find Full Text PDF

Autoantibodies to apolipoprotein A-I (anti-apoA-I IgG) have been shown to be both markers and mediators of cardiovascular disease, promoting atherogenesis and unstable atherosclerotic plaque. Previous studies have shown that high levels of anti-apoA-I IgGs are independently associated with major adverse cardiovascular events in patients with myocardial infarction. Autoantibody responses to apoA-I can be polyclonal and it is likely that more than one epitope may exist.

View Article and Find Full Text PDF

Purpose: Beagle dogs are used to study oral pharmacokinetics and guide development of drug formulations for human use. Since mechanistic insight into species differences is needed to translate findings in this species to human, abundances of cytochrome P450 (CYP) and uridine diphosphate glucuronosyltransferase (UGT) drug metabolizing enzymes have been quantified in dog liver and intestine.

Methods: Abundances of enzymes were measured in Beagle dog intestine and liver using selected reaction monitoring mass spectrometry.

View Article and Find Full Text PDF
Article Synopsis
  • * Most soluble plasma biomarkers for diseases, particularly cancer, are found at low levels due to tissue leakage, necessitating highly sensitive detection methods in the intricate plasma environment.
  • * The study presents an automated approach using multidimensional chromatography and on-line protein derivatization, achieving high sensitivity and reproducibility for plasma proteome analysis down to low ng/mL or high pg/mL levels.
View Article and Find Full Text PDF

To investigate why responses of mast cells to antigen-induced IgE receptor (FcεRI) aggregation depend nonlinearly on antigen dose, we characterized a new artificial ligand, DF3, through complementary modeling and experimentation. This ligand is a stable trimer of peptides derived from bacteriophage T4 fibritin, each conjugated to a hapten (DNP). We found low and high doses of DF3 at which degranulation of mast cells sensitized with DNP-specific IgE is minimal, but ligand-induced receptor aggregation is comparable to aggregation at an intermediate dose, optimal for degranulation.

View Article and Find Full Text PDF

Proteomic analysis of tissues has advanced in recent years as instruments and methodologies have evolved. The ability to retrieve peptides from formalin-fixed paraffin-embedded tissues followed by shotgun or targeted proteomic analysis is offering new opportunities in biomedical research. In particular, access to large collections of clinically annotated samples should enable the detailed analysis of pathologically relevant tissues in a manner previously considered unfeasible.

View Article and Find Full Text PDF