Publications by authors named "Cushley R"

The apolipoprotein A-I (apoA-I) solution structure in the presence of sodium dodecyl sulfate (SDS) was determined by combination of chemical shift index and torsion angle likelihood obtained from shift and sequence similarity methods. ApoA-I in lipid-mimetic solution is composed of alpha-helices (residues 8-32, 45-64, 67-77, 82-86, 90-97, 100-118, 122-140, 146-162, 167-205, 210-216 and 221-239), with 2-5 residue irregular segments between helical repeats, and the irregular segment 78-81 within helical repeat 2. ApoA-I is a monomer in the SDS complex and no evidence of interhelical interactions is found.

View Article and Find Full Text PDF
NMR studies of lipoprotein structure.

Annu Rev Biophys Biomol Struct

July 2002

Early NMR structural studies of serum lipoproteins were based on (1)H, (13)C, (31)P, and (2)H studies of lipid components. From the early studies information on composition, lipid chain dynamics and order parameters, and monolayer organization resulted. More recently, selective or complete isotopic labeling techniques, combined with multidimensional NMR spectroscopy, have resulted in structural information of apoprotein fragments.

View Article and Find Full Text PDF

The solution structure of an apoA-I deletion mutant, apoA-I(1-186) was determined by the chemical shift index (CSI) method and the torsion angle likelihood obtained from shift and sequence similarity (TALOS) method, using heteronuclear multidimensional NMR spectra of [u-(13)C, u-(15)N, u-50% (2)H]apoA-I(1-186) in the presence of sodium dodecyl sulfate (SDS). The backbone resonances were assigned from a combination of triple-resonance data (HNCO, HNCA, HN(CO)CA, HN(CA)CO and HN(COCA)HA), and intraresidue and sequential NOEs (three-dimensional (3D) and four-dimensional (4D) 13C- and 15N-edited NOESY). Analysis of the NOEs, H(alpha), C(alpha) and C' chemical shifts shows that apoA-I(1-186) in lipid-mimetic solution is composed of alpha-helices (which include the residues 8-32, 45-64, 67-77, 83-87, 90-97, 100-140, 146-162, and 166-181), interrupted by short irregular segments.

View Article and Find Full Text PDF

A 38-residue protein associated with cholesteryl ester transfer inhibition has been identified in baboons (Papio sp.). The cholesteryl ester transfer inhibitor protein (CETIP) corresponds to the N-terminus of baboon apoC-I.

View Article and Find Full Text PDF

In this paper, spectral estimation of NMR relaxation is constructed as an extension of Fourier Transform (FT) theory as it is practiced in NMR or MRI, where multidimensional FT theory is used. nD NMR strives to separate overlapping resonances, so the treatment given here deals primarily with monoexponential decay. In the domain of real error, it is shown how optimal estimation based on prior knowledge can be derived.

View Article and Find Full Text PDF

We have studied the three-dimensional structure of a biologically active peptide of apolipoprotein C-II (apoC-II) in the presence of lipid mimetics by CD and NMR spectroscopy. This peptide, corresponding to residues 44-79 of apoC-II, has been shown to reverse the symptoms of genetic apoC-II deficiency in a human subject. A comparison of alpha-proton secondary shifts and CD spectroscopic data indicates that the structure of apoC-II(44-79) is similar in the presence of dodecylphosphocholine and sodium dodecyl sulfate.

View Article and Find Full Text PDF

The high-resolution conformation of human apoC-I in complexes with sodium dodecyl sulfate (SDS) is presented. As estimated from CD data, apoC-I adopts 54% helical secondary structure when bound to SDS, which is similar to the helical content previously found with phospholipids. The NMR-derived conformation of apoC-I is composed of two amphipathic helices, residues 7-29 and 38-52, separated by a flexible linker.

View Article and Find Full Text PDF

Apolipoprotein (apo) C-I is a 57-residue exchangeable plasma protein distributed mainly in high and very low density lipoprotein. In this report we present the nuclear magnetic resonance spectra of native apoC-I and synthetic apoC-I, containing selected 15N-labelled amino acids, in the presence of sodium dodecyl sulfate. The proton resonances of apoC-I are assigned and the secondary structure is estimated from the difference of measured alpha-proton chemical shifts to random coil values and the observed NOE interactions.

View Article and Find Full Text PDF

Pulsed-field-gradient NMR spectroscopy was used to measure translational diffusion coefficients (Ds) for a peptide corresponding to a proposed lipid-binding domain of human apolipoprotein C-I, residues 7-24 (apoC-I(7-24)). Diffusion coefficients for apoC-I(7-24) were determined directly by following the decay of the resonance intensity of selected peptide protons at various concentrations of sodium dodecyl sulfate (SDS), a detergent increasingly being used to model the apolipoprotein environment. Previously, diffusion coefficients of peptides in the presence of SDS have been determined indirectly by monitoring the SDS diffusion coefficient.

View Article and Find Full Text PDF

Infrared absorption spectra are reported for six apolipoprotein fragments in SDS/D2O. Five of the peptides correspond to proposed lipid-binding domains of human apolipoproteins [apoC-I(7-24), apoC-I(35-53), apoA-II(18-30)+, apoA-I(166-185), apoE(267-289)], and the sixth is the de novo lipid associating peptide LAP-20. The amide I infrared absorption patterns are generally consistent with predominantly helical structures (as determined previously by NMR spectroscopy and distance geometry calculations) and further suggest that apoA-I(166-185) and apoE(267-289) are bound to SDS relatively weakly in comparison to the other four peptides.

View Article and Find Full Text PDF

The conformation of a synthetic peptide of 46 residues from apoA-I was investigated by fluorescence, CD, and 2D NMR spectroscopies in lipid-mimetic environments. ApoA-I(142-187) is mainly unstructured in water but helical in SDS or dodecylphosphocholine (DPC), although the peptide only associates with DPC at approximately the critical micellar concentration. Solution structures of apoA-I(142-187) were determined by distance geometry calculations based on 450 (in DPC-d38) or 397 (in SDS-d25) NOE-derived distance restraints, respectively.

View Article and Find Full Text PDF

A peptide comprising the N-terminal 38 residues of human apolipoprotein C-I (apoC-I(1-38)) was synthesized using solid-phase methods and its solution conformation studied by CD and 1H NMR spectroscopy. The CD data indicate that apoC-I(1-38) has a similar helical content (55%) in the presence of saturating amounts of SDS or egg yolk lysophosphatidylcholine. A structural ensemble of SDS-bound apoC-I(1-38) was calculated from 464 NOE-based distance restraints using distance geometry methods.

View Article and Find Full Text PDF

Structures of apoE(263-286) and apoE(267-289) have been determined in aqueous solution containing 90-fold molar excess of perdeuterated sodium dodecyl sulfate by CD and 1H NMR. Conformations were calculated by distance geometry based on 370 and 276 NOE distance restraints, respectively. RMSD for superimposing the region 265-284 from an ensemble of 41 structures for apoE(263-286) is 0.

View Article and Find Full Text PDF

A peptide was designed and synthesized to enhance the lipid binding properties of a 13-residue fragment of apolipoprotein A-II. The peptide, VTDYGKDLMEKVKEWLNS [apoA-II(18-30)+], contains a five-residue amphipathic motif, EWLNS, at the C-terminus of apolipoprotein A-II residues 18-30. The lipid binding properties of apoA-II(18-30)+ were assessed using optical spectroscopy in the presence of sodium dodecyl sulfate (SDS), dodecylphosphocholine (DPC), tetradecyltrimethyl ammonium chloride (TMA) and dimyristoylphosphatidylcholine (DMPC).

View Article and Find Full Text PDF

The segment, YSDELRQRLAARLEALKENG, corresponding to residues 166 to 185 of human serum apolipoprotein A-I, was studied by circular dichroism and NMR spectroscopy in sodium dodecyl sulfate and dodecylphosphocholine micelles. 2-Dimensional NOESY, TOCSY and DQF-COSY spectra of apoA-I(166-185) in perdeuterated sodium dodecyl sulfate (SDS-d25) and dodecylphosphocholine (DPC-d38) micelles were collected at a peptide/SDS (DPC) ratio of 1:40. Similar CD spectra and NOE connectivity patterns were observed for apoA-I(166-185) in SDS and DPC, indicating a similar helical conformation in both.

View Article and Find Full Text PDF

The synthetic lipid-associating peptide, LAP-20 (VSSLLSSLKEYWSSLKESFS), activates lecithin-cholesterol acyltransferase (LCAT) despite its lack of sequence homology to apolipoprotein A-I, the primary in vivo activator of LCAT. Using SDS and dodecylphosphocholine (DPC) to model the lipoprotein environment, the structural features responsible for LAP-20's ability to activate LCAT were studied by optical and two-dimensional 1H NMR spectroscopy. A large blue shift in the intrinsic fluorescence of LAP-20 with the addition of detergent suggested that the peptide formed a complex with the micelles.

View Article and Find Full Text PDF

Peptides corresponding to the proposed lipid-binding domains of human apolipoprotein C-I, residues 7-24 (ALDKLKEFGNTLEDKARE) and 35-53 (SAKMREWFSETFQKVKEKL), were studied by CD and two-dimensional 1H NMR spectroscopy. Sodium dodecyl sulfate (SDS) was used to model the lipoprotein environment. Analysis of the CD data shows that both peptides lack well-defined structure in aqueous solution but adopt helical, ordered structures upon the addition of SDS.

View Article and Find Full Text PDF

The conformation of a synthetic peptide corresponding to residues 35-53 (SAKM-REWFSETFQKVKEKL) of human apolipoprotein C-I (57 amino acids) was studied by nuclear magnetic resonance and circular dichroism spectroscopy in water and in perdeuterated dodecylphosphocholine solution at 37 degrees C and pH 4.8. The proton resonances of the peptide in both solutions were assigned from TOCSY, NOESY and DQF-COSY experiments.

View Article and Find Full Text PDF

Four peptides from 20 to 28 residues in length were studied by Fourier transform infrared (FTIR) spectroscopy in solution and in complexes with dimyristoylphosphatidylcholine (DMPC). The four peptides included the 20-residue lipid-associating peptide, LAP-20, which was predicted to form an amphipathic helical structure in the presence of lipids, and three other peptides whose sequences had less amphipathic helix-forming properties. The complexes were shown by electron microscopy to be discoidal in shape with mean diameters of 21-27 nm.

View Article and Find Full Text PDF

Discoidal complexes have been prepared from 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and the apoproteins of HDL3 (apo HDL3) or purified apo A-I. Gel electrophoresis established that apo HDL3 contained 74% apo A-I. Deconvolution and curve-fitting of the infra-red amide I band of the apoprotein in the lipid-protein complex revealed a secondary structure containing approximately 40% alpha-helix and 50% beta-structure.

View Article and Find Full Text PDF

Deuterium nuclear magnetic resonance (2H-NMR) spectra of multilamellar dispersions of 1,2-dipalmitoyl-sn-glycero-3-phospho-[1',2'-methylene-2H4]choline (DPPC-d4) containing 20 mol% of the isoprenoid compounds phytol or phytanic acid in excess deuterium-depleted water, or Tris buffer (pH 7.4), have been recorded over the temperature range 15-55 degrees C. Phytol (20 mol%) causes a decrease in the residual quadrupolar splitting, delta vQ, of the choline 1'-deuterons (i.

View Article and Find Full Text PDF

The structure and motion of phospholipids in human plasma lipoproteins have been studied by using 31P NMR. Lateral diffusion coefficients, DT, obtained from the viscosity dependence of the 31P NMR line widths, were obtained for very low density lipoprotein (VLDL), low-density lipoprotein (LDL), high-density lipoproteins (HDL2, HDL3), and egg PC/TO microemulsions at 25 degrees C, for VLDL at 40 degrees C, and for LDL at 45 degrees C. At 25 degrees C, the rate of lateral diffusion in LDL (DT = 1.

View Article and Find Full Text PDF

31P-NMR has been used to probe the motions of the phosphate moiety of phospholipid head-groups in samples of human low density lipoprotein (LDL) in which particle tumbling has been greatly reduced by increasing the viscosity of the medium, by forming an LDL gel by ultracentrifugation, or by precipitation with heparin. The 31P-NMR spectra of LDL gel give broad "powder-like" lineshapes, with the sign and magnitude of the anisotropy characteristic of the bilayer mesophase, which narrow as the temperature is raised from 5 to 45 degrees C. This narrowing occurs over the same temperature range as the core cholesteryl ester liquid-crystalline to liquid phase transition, suggesting interactions between the surface and core.

View Article and Find Full Text PDF

The order of phosphatidylcholine (PC) acyl chains in the surface monolayer of very low density lipoproteins (VLDL) and low density lipoproteins (LDL) has been determined from 2H nuclear magnetic resonance order parameters, SCD, using selectively deuterated PC or palmitic acids. From the computer simulated line shapes, we find two distinct phospholipid domains within the amphiphilic monolayer of both VLDL and LDL. In the more ordered domain of LDL, SCD was approximately 0.

View Article and Find Full Text PDF

Selectively labelled lipids have been incorporated into the surface monolayer of human serum low density lipoprotein (LDL) and very low density lipoprotein (VLDL). From 3 to 17 mol% of phosphatidylcholine, selectively deuterated at various positions along the sn-2-acyl chain, was transferred from unilamellar vesicles to VLDL using a partially purified phosphatidylcholine transfer protein. Selectively deuterated palmitic acids were incorporated into LDL (6-20 mol%) and into VLDL (7-10 mol%).

View Article and Find Full Text PDF