Spherical analyzers are well known instruments for inelastic X-ray scattering (IXS) experiments. High-resolution IXS experiments almost always use Si single crystals as monochromators and spherical analyzers. At higher energies (>20 keV) Si shows a high energy resolution (<10 meV), at an exact symmetric back-diffraction condition, since the energy resolution is given by the real part of the susceptibility or polarizability.
View Article and Find Full Text PDFRev Sci Instrum
November 2012
Several recent papers have shown the implementation of analyzer based X-ray phase contrast imaging (ABI) with conventional X-ray sources. The high flux is always a requirement to make the technique useful for bio-medical applications. Here, we present and discuss three important parameters, which need to be taken into account, when searching for the high flux ABI: anisotropic magnification, double image, and source size spread due to intrinsic dispersive diffraction by asymmetrically cut crystals.
View Article and Find Full Text PDFA long x-ray pathway based on an x-ray back-diffraction cavity for coherent x-ray beam experiments is presented. In the present work, such a setup was tested and used for propagation-based x-ray phase contrast imaging (PBI). This setup showed to be useful for PBI purposes, with the advantage of being compact (3 m long) when compared with long x-ray synchrotron beamlines with dimensions from tens to hundreds of meters.
View Article and Find Full Text PDFRev Sci Instrum
November 2007
An analyzer-based x-ray phase-contrast microscopy (ABM) setup combining a standard analyzer-based x-ray phase-contrast imaging (ABI) setup [nondispersive 4-crystal setup (Bonse-Hart setup)] and diffraction by asymmetrically cut crystals is presented here. An attenuation-contrast microscopy setup with conventional x-ray source and asymmetrically cut crystals is first analyzed. Edge-enhanced effects attributed to phase jumps or refraction/total external reflection on the fiber borders were detected.
View Article and Find Full Text PDFAn analyzer-based X-ray phase contrast imaging (ABI) system with an asymmetrical crystal set-up was mounted at Elettra's SYRMEP beamline. It was the first time that this set-up was implemented at Elettra. Advantages and disadvantages of such a set-up were exploited with quantitative and qualitative studies.
View Article and Find Full Text PDFThe linear thermal expansion coefficient of diamond has been measured using forward-diffracted profiles in X-ray backscattering. This experimental technique is presented as an alternative way of measuring thermal expansion coefficients of solids in the high-resolution Bragg backscattering geometry without the intrinsic difficulty of detecting the reflected beam. The temperature dependence of the lattice parameter is obtained from the high sensitivity of the transmitted profiles to the Bragg angle variation with temperature.
View Article and Find Full Text PDFAn unusual case of three diffracted beams from a single incoming monochromatic X-ray beam and from the same Bragg plane is reported. Extremely asymmetric diffraction in a thin Si perfect crystal with a cleaved lateral face was experimentally studied. Two of the beams emerge grazing the front and back faces and the third beam emerges from the lateral face.
View Article and Find Full Text PDFVersatility was a major consideration in the project to provide an X-ray diffraction station at LNLS. At least two techniques are possible at the station: powder diffraction and multiple single-crystal diffraction. A two-crystal monochromator based on monolithic elastic translators, developed at LNLS, with sagittal focusing by the second crystal, allows 10 mrad of a >/=2 keV monochromatic beam to be used on the diffractometer.
View Article and Find Full Text PDFA high-resolution spectrometer aimed at performing experiments of inelastic X-ray scattering by electronic excitations is described. The spectrometer has been installed at the D12A-XRD1 beamline of the National Synchrotron Light Laboratory (LNLS), in Campinas, Brazil. Synchrotron radiation is monochromated to about 6 keV and focused horizontally onto the sample by a sagittally focusing Si(111) double-crystal monochromator in non-dispersive setting.
View Article and Find Full Text PDFDiffraction-enhanced images have been obtained using two silicon crystals in a non-dispersive set-up at the XRD2 beamline at the Brazilian Synchrotron Light Laboratory (LNLS). A first asymmetrically cut silicon crystal using the (333) reflection vertically expanded the monochromated beam from 1 mm to 20 mm allowing the imaging of the whole sample without movements. A symmetrically cut Si(333) second crystal was used as a Bragg analyzer.
View Article and Find Full Text PDF