Combination therapy has proven successful in treating a wide variety of aggressive human cancers. Historically, combination treatments have been discovered through serendipity or lengthy trials using known anticancer agents with similar indications. We have used combination high-throughput screening to discover the unexpected synergistic combination of an antiparasitic agent, pentamidine, and a phenothiazine antipsychotic, chlorpromazine.
View Article and Find Full Text PDFEfforts to construct therapeutically useful models of biological systems require large and diverse sets of data on functional connections between their components. Here we show that cellular responses to combinations of chemicals reveal how their biological targets are connected. Simulations of pathways with pairs of inhibitors at varying doses predict distinct response surface shapes that are reproduced in a yeast experiment, with further support from a larger screen using human tumour cells.
View Article and Find Full Text PDFDrug Discov Today
January 2007
Drugs designed to act against individual molecular targets cannot usually combat multigenic diseases such as cancer, or diseases that affect multiple tissues or cell types such as diabetes and immunoinflammatory disorders. Combination drugs that impact multiple targets simultaneously are better at controlling complex disease systems, are less prone to drug resistance and are the standard of care in many important therapeutic areas. The combination drugs currently employed are primarily of rational design, but the increased efficacy they provide justifies in vitro discovery efforts for identifying novel multi-target mechanisms.
View Article and Find Full Text PDFTherapeutic regimens that comprise more than one active ingredient are commonly used in clinical medicine. Despite this, most drug discovery efforts search for drugs that are composed of a single chemical entity. A focus in the early drug discovery process on identifying and optimizing the activity of combinations of molecules can result in the identification of more effective drug regimens.
View Article and Find Full Text PDFMulticomponent therapies, originating through deliberate mixing of drugs in a clinical setting, through happenstance, and through rational design, have a successful history in a number of areas of medicine, including cancer, infectious diseases, and CNS disorders. We have developed a high-throughput screening method for identifying effective combinations of therapeutic compounds. We report here that systematic screening of combinations of small molecules reveals unexpected interactions between compounds, presumably due to interactions between the pathways on which they act.
View Article and Find Full Text PDF