The adult zebrafish brain, unlike mammals, has a remarkable regenerative capacity. Although inflammation in part hinders regeneration in mammals, it is necessary for zebrafish brain repair. Microglia are resident brain immune cells that regulate the inflammatory response.
View Article and Find Full Text PDFUnlike mammals, zebrafish can regenerate a damaged retina. Key to this regenerative response are Müller glia (MG) that respond to injury by reprogramming and adopting retinal stem cell properties. These reprogrammed MG divide to produce a proliferating population of retinal progenitors that migrate to areas of retinal damage and regenerate lost neurons.
View Article and Find Full Text PDFUnlike mammals, zebrafish can regenerate a damaged retina. This remarkable regenerative response is mediated by Müller glia (MG) that undergo a reprogramming event that drives their proliferation and the generation of multipotent progenitors for retinal repair. The mechanisms that drive MG reprogramming are poorly understood.
View Article and Find Full Text PDFThe Apobec/AID family of cytosine deaminases can deaminate cytosine and thereby contribute to adaptive and innate immunity, DNA demethylation, and the modification of cellular mRNAs. Unique among this family is Apobec2, whose enzymatic activity has been questioned and whose function remains poorly explored. We recently reported that zebrafish Apobec2a and Apobec2b (Apobec2a,2b) regulate retina regeneration; however, their mechanism of action remained unknown.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2013
Upon retinal injury, zebrafish Müller glia (MG) transition from a quiescent supportive cell to a progenitor cell (MGPC). This event is accompanied by the induction of key transcription and pluripotency factors. Because somatic cell reprogramming during induced pluripotent stem cell generation is accompanied by changes in DNA methylation, especially in pluripotency factor gene promoters, we were interested in determining whether DNA methylation changes also underlie MG reprogramming following retinal injury.
View Article and Find Full Text PDFUnlike mammals, adult zebrafish are able to regenerate multiple tissues including those of the CNS. In the zebrafish retina, injury stimulates Müller glia dedifferentiation into a multipotent retinal progenitor that is capable of regenerating all lost cell types. This dedifferentiation is driven by the reactivation of gene expression programs that share many characteristics with those that operate during early development.
View Article and Find Full Text PDF